Илья Петрович — пенсионер. Весь год он хотя бы раз в месяц ездит на свою дачу, которая находится в средней полосе европейской части Российской Федерации. Зимой — просто посмотреть, всё ли в порядке. Весной он чаще бывает на даче, а на лето переезжает туда жить без выездов. Осенью Илья Петрович опять переезжает в городскую квартиру. В течение года Илья Петрович регулярно платит за электроэнергию, которую он расходует на даче. Месячный расход электричества зависит от многих факторов — от того, как часто Илья Петрович бывает на даче, от температуры воздуха (Илья Петрович пользуется электрообогревателями, когда холодно). На диаграмме показан расход электроэнергии (в кВт•ч) на даче Ильи Петровича в каждом месяце года.
Правая часть всегда принимает неотрицательные значения. Поэтому левая часть тоже должна принимать неотрицательные значения. При x < 0 выражение . Функция представлена суммой двух монотонно возрастающих функция, поэтому и сама является монотонно возрастающей. При x = 0 y(0) = -3, поэтому при других x < 0 функция значения функции будут уменьшаться (быть отрицательными), т.к. если функция возрастает, то наименьшему значению x соответствует наименьшее значение y. Отсюда делаем вывод, что если x < 0, то левая часть не равна правой ⇒ уравнение не имеет отрицательных корней.
Разложим число ab(a² - b²) на множители: ab(a² - b²) = ab(a - b)(a + b). Нам нужно доказать, что это число делится на 6 <=> делится на 2 и на 3. Докажем, что число ab(a - b)(a + b) делится на 2. Если хотя бы одно из чисел а и b четно, то все нормально. Если a и b нечетные, то разность (a - b) делится на 2 и тоже вче нормально. Докажем, что число ab(a - b)(a + b) делится на 3. Если хотя бы одно из чисел a и b делится на 3, то все нормально. Если числа a и b не делятся на 3, но дают одинаковые остатки при делении на 3, то разность (a - b) делится на 3. Если числа a и b не делятся на 3 и дают разные остатки при делении на 3, то сумма (а + b) делится на 3. Значит, число ab(a² - b²) = ab(a - b)(a + b) делится на 2 и на 3, значит и на 6.
Правая часть всегда принимает неотрицательные значения.
Поэтому левая часть тоже должна принимать неотрицательные значения.
При x < 0 выражение
Функция
При x = 0 y(0) = -3, поэтому при других x < 0 функция значения функции будут уменьшаться (быть отрицательными), т.к. если функция возрастает, то наименьшему значению x соответствует наименьшее значение y.
Отсюда делаем вывод, что если x < 0, то левая часть не равна правой ⇒ уравнение не имеет отрицательных корней.