М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Katrun15
Katrun15
04.09.2022 20:59 •  Алгебра

Роскладіть на множники квадратний тричлен -x²-4x+21

👇
Открыть все ответы
Ответ:
Olga2907
Olga2907
04.09.2022
y''+3y'=9x
КЛАССИФИКАЦИЯ: Линейное неоднородное дифференциальное уравнение второго порядка со специальной право частью
Найти нужно: yо.н. = уо.о.  + уч.н.

Найдем уо.о. (общее однородное)
y''+3y'=0
Применим метод Эйлера
Пусть y=e^{kx}, тогда подставив в однородное уравнение, получаем характеристическое уравнение
k^2+3k=0
Корни которого k_1=-3;\,\,\,\, k_2=0
Тогда общее решение однородного уравнения будет
y_{o.o.}=C_1y_1+C_2y_2=C1e^{-3x}+C_2

Найдем теперь уч.н.(частное неоднородное)
f(x)=9x\cdot e^{0x} отсюда \alpha=0;\,\,\,\,\, P_n(x)=9x;\,\,\, n=1
где P_n(x) - многочлен степени х

Сравнивая \alpha с корнями характеристического уравнения  и, принимая во внимания что n=1 , частное решение будем искать в виде:
уч.н. = x e^{0x}(A+Bx)

Чтобы определить коэффициенты А и В, воспользуемся методом неопределённых коэффициентов:
y'=A+2Bx\\ \\ y''=(A+2Bx)'=2B

Подставим в исходное уравнение и приравниваем коэффициенты при одинаковых х

2B+3(A+2Bx)=9x\\ 2B+3A+6Bx=9x\\ \\ \displaystyle\left \{ {{2B+3A=0} \atop {6B=9}} \right. \Rightarrow \left \{ {{A=-1} \atop {B= \frac{3}{2} }} \right.

Тогда частное решение неоднородного будет иметь вид

уч.н. = \dfrac{3x^2}{2}-x

Запишем общее решение исходного уравнения

Y_{O.H}= \dfrac{3x^2}{2}-x +C_1e^{-3x}+C_2 - ответ
4,5(22 оценок)
Ответ:

2. График  y = 2x² - 6x + 4 = 2(x -1,5)²- 0,5   изображен  неправильно

вершина параболы в точке (1, 5 ; -0,5) ,  ось абсцисс  пересекает в двух точках  ( 1 ; 0)  и (2 ; 0)   || 1  и 2  корни   трехчлена 2x² - 6x + 4 || ,а ось ординат  в точке (0; 4)  пересекает в двух точках

3.   Все целые числа  кроме    { -1 ; 0 ; 1 ; 2 ; 3 }

другое  Найдите целые решения неравенства  x² - 2x -6 ≤ 0

ответ : { -1 ; 0 ; 1 ; 2 ; 3 }

5.  Решите неравенство  :  (x² -5x +6) / ( x²  -7x)  ≤  0

- - - - - - -

(x² -5x +6) / ( x²  -7x)  ≤  0 ⇔(x-2)(x-3) / x(x-7) ≤ 0 ⇔

{  x ( x - 2)(x - 3) ( x-7 )  ≤ 0 ;  x( x - 7 ) ≠ 0 .

решается методом интервалов

+ + + + + 0 - - - - - [2] + + + + + [3] - - - - - -(7 ) + + + + + + +

ответ :   x ∈ (0 ; 2] ∪ [3 ; 7) .


задания по алгебре :)))
4,7(13 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ