17см
Объяснение:
Позначимо гіпотенузу буквою х. Тоді перший катет дорівнює (х - 9) см. Другий катет на 7 см більше першого: х - 9 + 7 = х - 2 (см).
Площа прямокутного Трикутник дорівнює половині твори катетів і дорівнює 60 см ², складемо рівняння: (х - 2) (х - 9) / 2 = 60.
Вирішуємо рівняння:
х² - 2х - 9х + 18 = 120.
х² - 11х + 18 - 120 = 0.
х² - 11х - 102 = 0.
Вирішуємо квадратне рівняння через дискримінант.
D = 121 + 408 = 529 (√D = 23);
х1 = (11 - 23) / 2 = -12/2 = -6 (не підходить).
х2 = (11 + 23) / 2 = 17 (см).
Відповідь: 2) гіпотенуза трикутника дорівнює 17 см.
b1/(1+q)=16/3;
b1*q=4
Из второго уравнения находим q=4/b1. Подставляя это выражение в первое уравнение, приходим к уравнению b1²/(b1+4)=16/3, которое приводится к квадратному уравнению 3*b1²-16*b1-64=0. Дискриминант D=(-16)²-4*3*(-64)=1024=32². Тогда b1=(16+32)/6=8,
b2=(16-32)/6=-16/6=-8/3. Но так как прогрессия по условию- убывающая, то b1>b2. Значит, b1=8. Тогда q=b2/b1=4/8=1/2 и искомая сумма S7=8*((1/2)⁷-1)/(1/2-1)=8*(1-(1/2)⁷)/(1-1/2)=16*(1-(1/2)⁷)=16*(1-1/128)=16*127/128=127/8. ответ: 127/8.