Объяснение:
Собственная скорость Vc= х км/ч.
Против течения :
t₁ = S/(Vc- Vт) = 18 / (x-3) (ч.)
По течению:
t₂= S/ (Vc+Vт) = 48/ (x+3) (ч.)
Всего:
t₁+t₂=3 (ч.)
18/(х-3) + 48/(х+3) = 3 |× (x-3)(x+3)
18(x+3) + 48(x-3) = 3(x-3)(x+3)
18x+54 + 48x - 144= 3(x²-9)
66x -90 = 3x² - 27 |÷3
22x - 30 = x²-9
x²-9 -22x+30=0
x²-22x+21=0
D= (-22)² -4*1*21 = 484-84=400 ; √D= 20
x₁= (22 -20) /2 =2/2=1 - не удовл. условию, т.к. скорость лодки не может быть меньше течения реки
x₂= (22+20)/2= 42/2=21 (км/ч) Vc
ответ: Vc= 21 км/ч.
2π+4
Объяснение:
x²+y² ≤4x+4y-4
x²+y²-4x-4y+4 ≤0
(x²-4x+4)+(y²-4y+4 )≤4
(x-2)²+(y-2)² ≤2²-круг с центром O(2;2) , S=πR²=4π
y ≥ |x-2| -плоскость, ограниченная линиями y=x-2 и y=-(x-2).
Плоскость будет находится выше или на уровне линий(неравенство нестрогое)
Площадь фигуры-площадь пересечения круга и плоскости.
Разделим круг пополам, проведя линию y=2.Заметим, что верхняя часть круга полностью попала в плоскость.Нижняя же только частично.Если внимательно присмотреться, то можно заметить, что в плоскость попали только 2 прямоугольных треугольника.Найдем их площадь:
S=ab/2, где a,b-катеты.Но они равны радиусу круга, значит,
S=R^2/2=2
Таких треугольников два, значит, Sобщ=4
Складываем площадь верхнего полукруга и 2-х треугольников:
2π+4