Функция y = x + 4/3 является линейной, т.к. здесь х в первой степени. Эта функция в общем виде может быть представлена как y = ax + b, где a и b - любые числа ( в нашем случае a = 1, а b = 4/3).
Функция y = x (x + 2) / x может быть преобразована в линейную только при условии, что x не равен 0 (при этом условии можно правую часть выражения сократить на х и получить y = x + 2), но в т.к. функция задана общем виде, без этого ограничения, то она не является линейной. Две последние функции содержат х в отрицательной степени (степень х равна -1), они обе не являются линейными.
только есть нюанс -числа целые (а не натуральные)))
1) для четного целого n утверждение очевидно:
n = 2k, k∈Z (2k)² - 5(2k) + 2 = 2*(2k² - 5k + 1)
2) для НЕчетного целого n:
n = 2k+1, k∈Z
(2k+1)² - 5(2k+1) + 2 = 4k² + 4k + 1 - 10k - 5 + 2 = 2*(2k² - 3k - 1)
для чисел, кратных трем, будет на один вариант больше представлений:
n = 3k (число кратно трем)
n = 3k+1 (число НЕ кратно трем --дает остаток 1)
n = 3k+2 (число НЕ кратно трем --дает остаток 2)
1) (3k)³ + 2(3k) - 3 = 3*(9k³ + 2k - 1)
2) (3k+1)³ + 2(3k+1) - 3 = 27k³ + 27k² + 9k + 1 + 6k + 2 - 3 =
= 3*(9k³ + 9k² + 3k)
3) (3k+2)³ + 2(3k+2) - 3 = 27k³ + 54k² + 36k + 8 + 6k + 4 - 3 =
= 3*(9k³ + 18k² + 14k + 3)
можно было доказывать и в первом и во втором случае кратность только для первых двух слагаемых, т.к. третьи слагаемые в обоих случаях кратны заданным числам... чуть короче бы получилось...