М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
asylzhan1977
asylzhan1977
11.04.2022 15:19 •  Алгебра

Расстояние между двумя пунктами по реке равно 80 км. По течению реки лодка проплывает это расстояние за 5 часов,а против течения реки за 8 часов Найдите собственную скорость лодки и скорость течения реки. Решить с системы уравнений​

👇
Ответ:
IceOneBro
IceOneBro
11.04.2022

Скорость лодки 13км/ч, скорость течения 3км/ч.

Объяснение:

Пусть х-скорость лодки, а у-скорость течения.

\left \{ {{5(x+y)=80} \atop {8(x-y)=80}} \right. \\\left \{ {{x+y=16} \atop {x-y=10}} \right. left \{ {{x=16-y} \atop {16-y-y=10}} \right. left \{ {{x=16-y} \atop {16-2y=10}} \right.  \{ {{x=16-y} \atop {y=3}} \right.  \{ {{x=13} \atop {y=3}} \right.

4,5(49 оценок)
Открыть все ответы
Ответ:
AzatDit
AzatDit
11.04.2022
Похоже, последовательность задана такой формулой (типа "рекуррентной")
x_{n+1} ^{} = x_{n} + \frac{1}{ x^{2n} }
то есть,члены последовательности выражены через предыдущие члены
а разность членов последовательности имеет вид
x_{n+1}- x_{n}= \frac{1}{ x^{2n} }

таким образом, каждый член последовательности представляет собой сумму n членов  новой последовательности

x_{n} =1+ \frac{1}{ x^{2} } +\frac{1}{ x^{4} } +\frac{1}{ x^{6} } +...+\frac{1}{ x^{2(n-1)} }

Можно заметить, что этот член равен сумме первых  n членов некоей геометрической прогрессии со знаменателем \frac{1}{ x^{2} }

x_{n} = \frac{(1- x^{2n)} }{(1- x^{2} ) x^{2(n-1)} }

А тут придется остановиться, так как непонятно, чему равен x (без индекса)???

Откуда взялась эта задача? Если можно, дай ссылку на источник.
4,4(54 оценок)
Ответ:
vaselzhiriy
vaselzhiriy
11.04.2022

log(2) (4^x + 4) = x + log(2) (2^x*2^1 - 3)

log(2) (4^x + 4) = x + log(2) (2^(x+1) - 3)

ОДЗ

4^x + 4 > 0  x∈ R

2^(x+1) >  3

log(2) 2^(x+1) > log(2) 3

x + 1 > log(2) 3

x > log(2) 3 - 1  ≈ 1.59 - 1 ≈ 0.59

ОДЗ x ∈ (log(2) 3 - 1 , +∞ )

log(2) (4^x + 4) = x + log(2) (2^(x+1) - 3)

log(2) (4^x + 4) = log (2) 2^x + log(2) (2^(x+1) - 3)

log(2) (4^x + 4) = log(2) 2^x*(2*2^x - 3)

снимаем логарифмы

4^x + 4 = 2^x*(2*2^x - 3)

(2^x)^2 + 4 = 2*2^x*2^x - 3*2^x

(2^x)^2 - 3*2^x - 4 = 0

2^x = t > 0

t^2 - 3t - 4 = 0

D=9 + 16 = 25 = 5²

t₁₂ = (3 +- 5)/2 = -1   4

1. t₁ = -1

решений нет t>0

2. t=4

2^x = 4

x = 2 (входит в ОДЗ x > log(2) 3 - 1 )

ответ х=2

4,5(87 оценок)
Это интересно:
Полный доступ к MOGZ
Живи умнее Безлимитный доступ к MOGZ Оформи подписку
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ