1.
1)
38² - 64 = 38² - 8² = (38 - 8)(38 +8) = 30 * 46 = 1380,
2.
1)
2в² - 18 = 2 * (в² - 9) = 2 * (в - 3)(в + 3),
3)
81х² - 18ху + у² + 63х - 7у = (81х² - 18ху + у²) + (63х - 7у) =
= (9х - у)² + 7*(9х - у) = (9х - у)(9х - у + 7),
4)
m² + n² + 2mn = (m + n)².
3.
а)
(8 - 2n)(8 + 2n) + (9 + 2n)² - 64 = 64 - 4n² + 81 + 36n + 4n² - 64 =
= 36n + 81 = 9(4n + 9),
б)
(3х - 8)² + (4х - 8)(4х + 8) = 9х² - 48х + 64 + 16х² - 64 = 25х² - 48х,
при х=-2:
25 * (-2)² - 48 * (-2) = 100 + 96 = 196,
4.
1 число - х,
2 число - (х+2),
(х+2)² - х² = 188,
х² + 4х + 4 - х² = 188,
4х = 184,
х = 46 - 1 число,
х+2 = 46+2 = 48 - 2 число
б. значение аргумента при у=-5:
-2х+5 = -5 2х = 10 х = 5.
в. Чтобы узнать, принадлежит ли графику функции точки А(1;3)В(-1;6), надо подставить в формулу значение аргумента х1 = 1, х2 = -1 и сравнить значение функции и ординату точки.
Если совпадают - то точка принадлежит графику функции.
у1 = -2*1 + 5 = -2 + 5 = 3 - совпадают.
у2 = -2*(-1) + 5 = 2 + 5 = 7 - не совпадают.
2) График функции У=3х+4 - это прямая линия.
Координаты точек пересечения графика с осями координат определяются приравниванием х или у нулю.
3*0+4 = 4 = точка пересечения оси ординат (ось у)
3х+4 = 0 3х = -4 х = -4/3 = -1(1/3) - точка пересечения оси абсцисс (ось х).
3) График функции у=кх проходит через начало координат.
Коэффициент к = dy/dx = -6 / 2 = -3.
График проходит через 0 и заданную точку.
4) Точка пересечения графиков определяется решением уравнения
-4х +1,3 = х - 2,7
5х = 4
х = 4/5 = 0,8
Вторая координата находится подстановкой полученного значения х в формулу одной из прямых у = -4*0,8 + 1,3 = -3,2 + 1,3 = -1,9
или у = 0,8 - 2,7 = -1,9.
5) Параллельные графики имеют равные коэффициенты при х:
графику У=-3х+12 параллельна прямая У=3х-5.