Lg означает десятичный логарифм —логарифм по основанию 10.Т.е lgb=log(10)b,пример lg100=log(10)100=2. lg (x^2-8)=lg (2-9x) В данном уравнении основания у тебя равны =>x^2-8=2-9x x^2+9x-10=0 x1=(-10),x2=1. ОДЗ: x^2-8>0 и 2-9x>0 Корень x2 не подходит=> ответ:x=(-10) При решении уравнений,а также неравенств тебе следует не забывать ОДЗ для логарифма,т.е,если log(a)b=c,то основание а>0 и а не равно 1,b>0.Типов заданий с логарифмами великое множество и к каждому случаю нужно индивидуальное решение)Кстати,есть еще lnb=log(e)b,где е-экспонента~2,72
q^(n-1)=256 (1-q^n)=341*(1-q) или, что то же самое: (q^n-1)=341*(q-1) Вероятно, все ж , q -целое, тогда либо q=2 n=9 либо 4 n=5 либо 16 n=3 256 n=2 Легко видеть, что годится только q=4 n=5 ответ: q=4 n=5 б) 243* (3^(-n)+1)=182*(1/3+1) 243*(1-(-3)^(-n))=182*4/3 729 -3^6*(-3)^(-n)==728 (3^6)*(-3)^(-n)=1 ответ: n=6 an=243*(-1/(3^5))=-1
lg (x^2-8)=lg (2-9x) В данном уравнении основания у тебя равны =>x^2-8=2-9x
x^2+9x-10=0
x1=(-10),x2=1.
ОДЗ: x^2-8>0 и 2-9x>0
Корень x2 не подходит=>
ответ:x=(-10)
При решении уравнений,а также неравенств тебе следует не забывать ОДЗ для логарифма,т.е,если log(a)b=c,то основание а>0 и а не равно 1,b>0.Типов заданий с логарифмами великое множество и к каждому случаю нужно индивидуальное решение)Кстати,есть еще lnb=log(e)b,где е-экспонента~2,72