Було виконано три серії підкидань монети , по 100 підкидань у кожній. Результати досліду подано в таблиці. Знайти відносну частоту події А. (Заповнити до кінця таблицю) Серії 1,2,3 Випадання монети аверсом догори 52 55 57 Відносна частота події А?
Чертим трапецию АВСД проводи одну диагональ ВД получается 2 равнобедренных треугольника АДВ и ВСД пусть α угол при основании треугольника который примыкает к верхнему основанию ∠СВД β ∠ВАД тогда из условий трап получаем ∠ВАД+∠АВС=180° β+(β+α)=α+2β=180° из треуг ВСД ∠ВСД=180°-2α=∠АВС=α+β решим систему уравнений α+2β=180° α=180°-2β α=180°-2β α=180°-2β α=180°-144° 180°-2α=α+β 3α+β=180° 3*180°-6β+β=180° 5β=360° β=72° α=36° α+β=36°+72°=108° тогда углы трапеции равны 72°, 108°, 108°, 72°
Чертим трапецию АВСД проводи одну диагональ ВД получается 2 равнобедренных треугольника АДВ и ВСД пусть α угол при основании треугольника который примыкает к верхнему основанию ∠СВД β ∠ВАД тогда из условий трап получаем ∠ВАД+∠АВС=180° β+(β+α)=α+2β=180° из треуг ВСД ∠ВСД=180°-2α=∠АВС=α+β решим систему уравнений α+2β=180° α=180°-2β α=180°-2β α=180°-2β α=180°-144° 180°-2α=α+β 3α+β=180° 3*180°-6β+β=180° 5β=360° β=72° α=36° α+β=36°+72°=108° тогда углы трапеции равны 72°, 108°, 108°, 72°
получается 2 равнобедренных треугольника АДВ и ВСД
пусть α угол при основании треугольника который примыкает к верхнему основанию ∠СВД
β ∠ВАД тогда из условий трап получаем ∠ВАД+∠АВС=180°
β+(β+α)=α+2β=180°
из треуг ВСД ∠ВСД=180°-2α=∠АВС=α+β решим систему уравнений
α+2β=180° α=180°-2β α=180°-2β α=180°-2β α=180°-144°
180°-2α=α+β 3α+β=180° 3*180°-6β+β=180° 5β=360° β=72°
α=36°
α+β=36°+72°=108°
тогда углы трапеции равны 72°, 108°, 108°, 72°