Перед Вами данные о сборе школьников первого класса в школу. Изучите информацию и ответьте на вопросы: А) Рассчитайте, какой процент от семейного дохода нужно потратить на первоклассника в семье, если ее суммарный доход 52000 руб.?
Б) Рассчитайте, на кого семья потратит больше: на девочку или мальчика? И на сколько процентов?
В) Сколько процентов от общих затрат на мальчика, стоит костюм школьника?
Левая часть представляет собой сумму неотрицательных слагаемых, эта сумма обращается в ноль тогда и только тогда, когда оба слагаемых суть нули, если хоть одно из них отлично от нуля, то вся сумма (левая часть) отлична от нуля (больше нуля). Таким образом данное уравнение равносильно системе: { (x^2-1)^2 = 0; { (x^2 - 6x -7)^2 = 0; что равносильно { x^2-1 = 0; { x^2 - 6x - 7 = 0; равносильно { x^2=1; {x^2 - 6x - 7 = 0; первое уравнение дает x1=1; или x2=-1; x1 = 1, подставляем во второе уравнение последней системы: 1 - 6 - 7 = 0; <=> -12=0, ложное равенство, поэтому x1=1, не является решением системы. x2 = -1; подставляем во второе уравнение: (-1)^2 - 6*(-1) - 7 = 1+6-7=0, верное равенство, таким образом x=-1 единственное решение системы. ответ. x=(-1).
(100%+6%): 100%=1,06 - во столько раз возрастёт вклад за 1 год в первом банке (100%+8%): 100%=1,08 - во столько раз возрастёт вклад за 1 год во втором банке 1 банк 2 банк вклад х грн (1200-х) грн через год на счёте 1,06*х грн 1,08*(1200-х) по условию ,через 1 год на счетах в банках стало 1200+80=1280 грн. составим уравнение: 1,06х+1,08(1200-х)=1280 1,06х+1296-1,08х=1280 -0,02х=-16 х=800 (грн)- положили в 1 банк 1200-800=400 (грн)- положили во второй банк
{ (x^2-1)^2 = 0;
{ (x^2 - 6x -7)^2 = 0;
что равносильно
{ x^2-1 = 0;
{ x^2 - 6x - 7 = 0;
равносильно
{ x^2=1;
{x^2 - 6x - 7 = 0;
первое уравнение дает x1=1; или x2=-1;
x1 = 1, подставляем во второе уравнение последней системы:
1 - 6 - 7 = 0; <=> -12=0, ложное равенство, поэтому x1=1, не является решением системы.
x2 = -1; подставляем во второе уравнение:
(-1)^2 - 6*(-1) - 7 = 1+6-7=0, верное равенство, таким образом
x=-1 единственное решение системы.
ответ. x=(-1).