На две пристани пойдет 2+2+4, а на строительство дорог не менее 2+5, если по перпендикуляру; итого не менее 11 больше 10. Если строить одну пристань в точке X, то оптимальному её расположению соответствует такая точка, для которой AX+XB минимальна. Эта точка находится так: отражаем B симметрично относительно реки, получая точку B', и проводим отрезок AB'. В пересечении с рекой и получается X. Ввиду равенства XB=XB', а также неравенства треугольника AX+XB'<=AB, получаем нужный вывод.Пусть река идёт по горизонтали, и это ось абсцисс. Тогда ординаты точек A и B отличаются на 3. Расстояние равно 5, и тогда абсциссы отличаются на 4 в силу теоремы Пифагора. Разность абсцисс у точек A, B' такая же, а разность ординат равна 2+5=7. Это значит, что сумма длин дорог равна AX+XB=AB'=корень из(7^2+4^2}=корень из(65) < 8,1, что проверяется возведением в квадрат. Тогда в лимит 10,1 с учётом стоимости постройки одной пристани мы укладываемся.
Простое тригонометрическое уравнение. Косинус равен минус 1/2, когда его аргумент равен (120° или 2π/3) и (240° или 4π/3). Ещё следует добавить период 2πn, где n ∈ Z (целое).
Т.е. решением cos(x-π/4) = -1/2 будет: 1) x - π/4 = 2π/3 + 2πn; x = 2π/3 + π/4 + 2πn = 11π/12 + 2πn 2) x - π/4 = 4π/3 + 2πn; x = 4π/3 + π/4 + 2πn = 19π/12 + 2πn
Если последнее чем-то не нравится, то можно из решения вычесть один период, т.е. 2π = 24π/12. Тогда, второе решение буде выглядеть так: x = 19π/12 + 2πn - 24π/12 = -5π/12 + 2πn. Но это одно и тоже.
х >10