Применение интегралов при вращении кривой. Почему при вычислении объëма мы интегрируем по dx, а при вычислении площади поверхности - по ds (приращению кривой) ?
Для того,чтобы сумма квадратов корней уравнения равнялась какой-либо величине, эти корни должны существовать. Значит, дискриминант нашего уравнения должен быть неотрицательным,т.е (3p-5)^2-4(3p^2-11p-6)>=0. При таких "p" у исходного уравнения найдутся(возможно, совпадающие) корни x1 и x2. Запишем для них теорему Виета: x1+x2=-b/a=5-3p x1*x2=c/a=3p^2-11p-6 Теперь,не вычисляя корней, можно найти сумму их квадратов через "p": x1^2 + x2^2. Выделим полный квадрат: (x1+x2)^2-2x1*x2= (5-3p)^2-2(3p^2-11p-6). По условию, эта сумма квадратов равна 65. Получаем: (5-3p)^2-2(3p^2-11p-6)=65 Решим его: 25-30p+9p^2-6p^2+22p+12-65=0 3p^2-8p-28=0 D=(-8)^2-4*3*(-28)=400 p1=(8-20)/6=-2 p2=(8+20)/6=14/3 Проверим, подставив эти значения "p" в исходное уравнения, чтобы убедиться, что дискриминант неотрицателен. Проверять здесь не буду из-за экономии времени. Все найденные "p" подходят. Теперь найдем корни уравнения: 1)p=-2 x^2-11x+28=0 x1=4; x2=7 2)p=14/3 x^2+9x+8=0 x1=-8; x2=-1 ответ: при p=-2 x1=4, x2=7; при p=14/3 x1=-8, x2=-1.
П+3С=9 умножим на 3
3П+5С=19
3П+9С=27
3П+5С=19 вычтем из 1 второе
9С-5С=27-19
4С=8
С=2(м)-пошло на 1 сарафан
П+3С=9
П+3*2=9
П+6=9
П=3(м)-пошло на одно платье
2. Упростите
выражение: а) (у + 3)2 – 6у, б) (с – 2)2 – с(3с – 4)
а)у²+6у+9-6у=у²+9
б)с²-4с+4-3с²+4с=-2с²+4
Построить график функции у = - 2х + 3.
х=0 х=3
у=3 у=-3
по этим двум точкам строим прямую
б)
При каком значении х значение у равно
– 3.
-3=-2х+3
-2х=-6
х=3
6*. Запишите уравнение прямой, которая
проходит через начало координат и через точку пересечения прямых
2х + 3у = - 4
х – у = - 7 умножим на 3
2х+3у=-4
3х-3у=-21 сложим
5х=-25
х=-5
х-у=-7
-5-у=-7
у=2
Прямая проходит через точку (0;0)-начало координат и через точку(-5;2).
у=kx+b
0=k*0+b
b=0
2=-5k+0
-5k=2
k=-2/5=-0.4
y=0.4x
уравнение прямой,которая проходит через эти две точки