Что такое |x| ? |x|=x при x≥0 и |x|=-x при x<0 поэтому разобьем систему на 2. 1. x<0 y=-x+4 y=-5/(x-2) Решаем -x+4=-5/(x-2) x≠2 (x-2)(-x+4)=-5 -x²+4x+2x-8+5=0 -x²+6x-3=0 x²-6x+3=0 D=6²-4*3=36+12=24 √D=2√6 x₁=(6-2√6)/2=3-√6 - отбрасываем, так как по условию x<0 x₂=(6+4√3)/2=3+2√3 - отбрасываем, так как по условию x<0 x=3-2√3 y=-3+2√4+4=1+2√3 2. x≥0 y=x+4 y=-5/(x-2) Решаем x+4=-5/(x-2) x≠2 (x-2)(x+4)=-5 x²+4x-2x-8+5=0 x²+2x-3=0 D=2²+4*3=16 √D=4 x₁=(-2-4)/2=-3 - отбрасываем, так как по условию x≥0 x₂=(-2+4)/2=1 x=1 y=1+4=5 ответ: x=1 y=5
Объяснение:
а)2/x+1 - x+3/x+1=(2-(x+3))/(x+1)=(2-x-3)/(x+1)=(-1-x)/(x+1)=-(x+1)/(x+1)=-1
б)7x+5/1-x + 3x+6/x-1=-(7x+5)/(x-1) + (3x+6)/(x-1)=(-7x-5+3x+6)/(x-1)= =(-4x+1)/(x-1)
в)2/x + 3x-2/x+1=[2(x+1)+x(3x-2)]/x(x+1)=(2x+2+3x²-2x) / x(x+1)= =(3x²+2)/x(x+1)
г)x+3/x²+x - 1/x+1 + 2/x=[(x+3)(x+1)+x²(x-1)+2x((x+1)] /x²(x+1)= =(x³+2x²+6x+3)/x²(x+1)
д)4/x²-4 - 1/x-2 - 1/x+2=[4-(x+2)-(x-2)]/(x²-4)=(4-x-2-x+2)/(x²-4)= =-2x+4)/(x²-4)=-2(x-2)/(x-2)(x+4)=-2/(x+2)
вы не используете круглые скобки в своих задачах, что затрудняет разделение отдельных выражений