Многое в поставленной вами задачи зависит от того Какие значения может принимать Х изменяясь в своей области определения . Кроме того важно сразу отметить что если вы ищете аналитическую закономерность (виде некоторой формулы) то её может и не быть.
Если множество значений Х дискретно то можно использовать любой из стандартных методов интерполяции : линейную, дробно- линейную, многочлен Тейлора , Чебышева, Ньютана , Лагранжа и т.д
Приведу пример нахождения интерполяционного многочлена Тейлора по следующим данным : при Х1=0 Y1=1 ,при X2=1 Y2=2 , при X3=2 Y3=1; многочлен ищем ввиде: P(x)=A0+A1*X+A2*X^2 , где коэффициенты A0,A1,A2- подлежат определению, подставляя последовательно вместо X значения Х1,Х2,Х3 а вместо P(x) значения Y1,Y2,Y3- соответственно получим следующию систему уравнений: P(X1)=A0+A1*0+A2*0*0=A0=1 итак A0=1; P(X2)=1+A1*1+A2*1*1=2 P(X3)=1+A1*2+A2*2*2=1+2*A1+4*A2=1 находим A1 и A2 из последних двух строк Получим A1=-1 ,A2=2 итак искомый многочлен представляется P(x)=1 – X +2*X^2 Данный многочлен даёт представление о ВОЗМОЖНОЙ аналитической зависимости между X и Y. Естественно этот результат не единственен. Вообще же рекомендую прочитать книжку: Л.И. Турчак П.В. Плотников «Основы численных методов»
1) х(х²-16) =0 пока мы приравниваем нулю,чтобы решить х(х-4)(х+4) =0 х1=0 х-4=0 отсюда х2= 4 х+4=0 отсюда х3= -4 рисуем луч, отмечаем эти точки
- 404⇒ Теперь возьми из интервала от минус ∞ до -4 любое значение и подставь его в данное первое неравенство вместо х, например х= -5 проверяем: (-5)³ - 16(-5)= -125+80= -45 <0 - верно, значит этот интервал подходит, далее смотрим второй интервал, возьми точку х= - 1, подставь в нерав-во (-1)³-16(-1)= -1 +16=15 <0 неверно! второй интервал не подходит,далее, третий интервал смотри от 0 до 4 возьми точку х=1 подставь её 1-16= -15< 0 -верно, последний интервал от 4 до плюс+∞ Пусть х= 5 подставь 5³-16·5=125-80< 0 неверно значит ответ такой : Х⊂от - ∞до -4∪от 0 до 4, не включая точки -4,0,4 ,так как стоит строгий знак неравенства < ( без равно)
-0,500,5⇒ Точно также из четырех интервалов бери пробные точки и подставь в нерав-во 4х³-х>0 Интервалы, в которых пробные точки обратят неравенство в верное и будут объединенным решением , возьми пробные точки, например -1, -0,1 0,1; 1( это с первого по четвертый интервал)
ctg135=1/tg135
tg135=-1
4*(-0.5)-(-1)=-2+1=-1