Найдём нули модулей: х=1 , х= -3 Нули модулей разбивают всю числовую прямую на три промежутка, раскроем модули на каждом из промежутков и решим уравнение. 1) х∈ (-∞; -3) на этом промежутке х-1 < 0, а х+3<0, поэтому, получим уравнение --х+1 +(-х -3) =4 -х+1-х -3 = 4 -2х=6 х=-3 не принадлежит рассматриваемому промежутку 2) х∈ [-3,1) на этом промежутке х-1<0, а х+3 ≥0, получим уравнение: -х+1 + х+3 =4 4 =4 х - любое число, принадлежащее рассматриваемому промежутку
3) х∈ [1; +∞) на этом промежутке х-1>0, а х + 3>0, получим уравнение: х-1+х+3 = 4 2х=2 х=1- принадлежит рассматриваемому промежутку. Итак, решение уравнения: х∈ [-3;1]
-7==-6==-5==-4==-3==-2==-1==0==1==2==3==4==5==6==7 Кузнец добрыгивает до 7 влево и вправо то есть -7 и 7 есть точки Пусть он прыгает 6 вправо или лево - теперь он может прыгнуть в -7 или 7 или в -5 и 5 Пусть прыгает до 5 оттуда может 6-м прыжком прыгнуть в 6 или -6 (здесь мы знаем) или 4 и -4 отсюда в 3 или -3 До 4-х прыгает отвюда может попасть в (5 -5 тут знаем) или -3 и 3 то есть модет прыгнуть туда - сюда это будет -3 и 3 или два прыжка на 1 и -1 То есть точки -7 -5 -3 -1 1 3 5 7 может допрыгать (8 точек) В четные попость не может, допрыгать до четной на четное количество прыжков а у нас 7 нечетное
Нули модулей разбивают всю числовую прямую на три промежутка, раскроем модули на каждом из промежутков и решим уравнение.
1) х∈ (-∞; -3) на этом промежутке х-1 < 0, а х+3<0, поэтому, получим уравнение --х+1 +(-х -3) =4
-х+1-х -3 = 4
-2х=6
х=-3 не принадлежит рассматриваемому промежутку
2) х∈ [-3,1) на этом промежутке х-1<0, а х+3 ≥0, получим уравнение:
-х+1 + х+3 =4
4 =4
х - любое число, принадлежащее рассматриваемому промежутку
3) х∈ [1; +∞) на этом промежутке х-1>0, а х + 3>0, получим уравнение:
х-1+х+3 = 4
2х=2
х=1- принадлежит рассматриваемому промежутку.
Итак, решение уравнения: х∈ [-3;1]