1) Возьмем ширину прямоугольника a за х см, тогда его длина b = х+4 см.
2) S' = a*b = х*(х+4)
3) Если ширину прямоугольника увеличить на 2 см, а длину увеличить на 6 см, то получим: S'' = (а+2)*(b+6) = (х+2)*(x+10) = х^2+10х+2х+20 = х^2+12х+20
4) S'' - S' = х^2 + 12х + 20 - х^2 - 4х = 8х+20 = 44, отсюда 8*х = 24, х = 24:8 = 3.
Таким образом, ширина прямоугольника = 3 см, его длина = 3+4 = 7 см.
В условиях задачи не указано, что именно нужно найти, но если периметр, то по формуле P = 2*(a+b) = 2*(3+7) = 20 см. Если площадь, то по формуле S = a*b = 3*7 = 21 см^2.
Рассмотрим несколько ситуаций:
1)если старший коэффициент при x^2=0 ( при а=-2):
0*x^2+3x-2+5=0
3x+3=0
3x=-3
x=-1
Значит, a=-2 нам подходит
2) если средний коэффициент равен нулю ( при а=1):
3x^2+0*x+1+5=0
3x^2+6=0
3x^2=-6 - решений нет, значит а=1 нам не подходит.
3) если а не равно -2 и не равно 1, то перед нами квадратное уравнение, которое имеет хотя бы один корень тогда, когда дискриминант >=нуля:
D= (1-a)^2-4(2+a)(a+5)>=0
1-2a+a^2-4(2a+10+a^2+5a)>=0
1-2a+a^2-4(a^2+7a+10)>=0
1-2a+a^2-4a^2-28a-40>=0
-3a^2-30a-39>=0
3a^2+30a+39<=0 | :3
a^2+10a+13<=0
a^2+10a+13=0
D=10^2-4*1*13=48
a1=(-10-4V3)/2=-5-2V3
a2=-5+2V3
+[-5-2V3]-[-5+2V3]+
"-2" - входит в этот промежуток
ответ: x e [-5-2V3] U [-5+2V3]