Решил только 5, за такие только это:
1) x - √x - 12 = 0
-√x = -x + 12
√x = -x + 12
√x = x - 12
x = x² - 24x + 144
x - x² + 24x - 144 = 0
25x - x² + 24x - 144 = 0
x² - 25x + 144 = 0
D = 625 - 576 = 7²
x = (25 + 49)/4 = 16
ответ: 16
2) ∛x² + 8 = 9∛x
∛x² + 8 - 9∛x = 0
t² - 9t + 8 = 0
D = 81 - 32 = 7²
t1 = 1 t2 = 8
x = 1 x = 512
ответ: 1; 512
3) √x - 2/√x = 1
(x - 2 - √x)/√x = 0 x>1
x - 2 - √x = 0
√x = x - 2
x² - 5x + 4 = 0
D = 25 - 16 = 3²
x = 4
ответ: 4
4) √(x + 5) - 3∜(x+5) + 2 = 0
t² - 3t + 2 = 0
D = 9 - 8 = 1²
t1 = 1 t2 = 2
∜(x + 5) = 1 ∜(x + 5) = 2
x = -4 x = 11
ответ: -4; 11
5) 1/(∛x + 1) + 1/(∛x+3) = 0
(∛x + 3 + 2(∛x + 1))/((∛x + 1) * (∛x+3)) = 0
∛x + 3 + 2(∛x + 1) = 0
∛x + 3 + 2∛x + 2 = 0
3∛x + 5 = 0
3∛x = -5
x = -(5/3)³
x = -4,629
ответ: -4,629
а) z* = -z·i
z = x + iy
x - iy = -(x + iy)·i
x - iy = -ix + y
x + ix = y + iy
x·(1 + i) = y·(1 + i)
y = x
z = x + ix, x ∈ R
б) 2·|z| - 8z + 1 + 2i = 0
z = x + iy
2√(x² + y²) - 8·(x + iy) + 1 + 2i = 0
2√(x² + y²) - 8x - i8y + 1 + 2i = 0
2√(x² + y²) = (8x - 1) + i(8y - 2)
2√(x² + y²) = 8x - 1
8y - 2 = 0
y = 1/4
2√(x² + (1/4)²) = 8x - 1
4(x² + 1/16) = 64x² - 16x + 1
8x - 1 ≥ 1/2
4x² + 1/4 = 64x² - 16x + 1
8x ≥ 3/2
60x² - 16x + 3/4 = 0
x ≥ 3/16
240x² - 64x + 3 = 0
D = 64² - 4·240·3 = 1216
x = (64 (+/-) √1216)/480 = (64 (+/-) 8√19)/480 = (8 (+/-) √19)/60
x = 2/15 (+/-) √19/60
x ≥ 3/16
x = 2/15 + √19/60
z = 2/15 + √19/60 + i/4
вы сами решили эту задачу.!