№ 1. (8 4/5 - 13,8 : 3 5/6) · 12/13 = 4 целых 4/5 = 4,8.
1) 13,8 : 3 5/6 = 138/10 : 23/6 = 69/5 · 6/23 = (3·6)/(5·1) = 18/5 = 3 3/5
2) 8 4/5 - 3 3/5 = 5 1/5 = 26/5
3) 26/5 · 12/13 = (2·12)/(5·1) = 24/5 = 4 4/5 = 4,8
№ 2. 1 - 0,15 : (11/12 - 0,75) = 0,1.
1) 11/12 - 0,75 = 11/12 - 3/4 = 11/12 - 9/12 = 2/12 = 1/6
2) 0,15 : 1/6 = 3/20 · 6/1 = (3·3)/(10·1) = 9/10 = 0,9
3) 1 - 0,9 = 0,1
№ 3. 8,3 - (3 5/12 - 1 1/3) : 5/12 = 3,3.
1) 3 5/12 - 1 1/3 = 3 5/12 - 1 4/12 = 2 1/12 = 25/12
2) 25/12 : 5/12 = 25/12 · 12/5 = 25/5 = 5
3) 8,3 - 5 = 3,3
tg α – tg β = tg (α – β) (1 + tg α tg β).
Получаем:
tg x tg 2x tg 3x = tg 3x – tg x + tg 4x – tg 2x,
tg x tg 2x tg 3x = tg 2x (1 + tg x tg 3x) + tg 2x (1 + tg 2x tg 4x),
tg 2x (1 + tg x tg 3x – tg x tg 3x + 1 + tg 2x tg 4x) = 0,
tg 2x = 0 или tg 2x tg 4x = –2.
С первым понятно, что делать. Второе:
tg 2x tg 4x = –2,
tg 2x · 2 tg 2x / (1 – tg² 2x) = –2,
tg² 2x = tg² 2x – 1.
Это равенство невозможно.
Все решения получаются из уравнения tg 2x = 0, то есть 2x = πn, x = πn/2. Значения с нечётными n не подходят (tg x и tg 3x не существуют) , значит, ответ x = πk. Возможно так