56 мин=56\60 часа.
Пусть первый велосипедист был в пути t часов до встречи.
Второй ехал t и ещё 56/60 часа, когда первый стоял.
Формула пути S=vt (v -скорость, t-время)
До встречи первый проехал S₁= 20•t км, второй S₂=30•(t+56/60)
Расстояние между городами равно 93 км.
S₁+S₂=93 км
20t +30•(t+56/60)=93
20t+30t+30•56/60=93
50t=93-28
t=65:50
t=1,3 ( часа) - время, которое был в пути первый велосипедист.
За это время он проехал
20•1,3=26 (км)
Второй велосипедист проехал остальное расстояние между городами:
93-26=67 км - на таком расстоянии от второго города произошла встреча.
50 км вел проедет за 50/х ч, а авто за 50/(х + 60) ч. 2 ч 40 мин = 2 + 2/3 = 8/3 ч. Получаем уравнение
50/x - 8/3 = 50/(x + 60)
50/x - 8/3 - 50/(x + 60) = 0
(50*3(x + 60) - 8x(x + 60) - 50*3x) / (3x(x + 60)) = 0
150(x + 60) - 8x^2 - 8*60x - 150x = 0
150x + 9000 - 8x^2 - 480x - 150x = 0
9000 - 8x^2 - 480x = 0
x^2 + 60x - 1125 = 0
D/4 = 30^2 + 1125 = 2025 = 45^2
x1 = -30 - 45 = -75 < 0 - не подходит
x2 = -30 + 45 = 15 - подходит
Скорость велосипедиста 15 км/ч, скорость автомобилиста 75 км/ч.