Пусть х дм - длина одного катета, тогда
(23+х) дм - длина другого катета.
37 дм - гипотенуза
ОДЗ: 0<x<37
Согласно теореме Пифагора для прямоугольного треугольника сумма квадратов катетов равна квадрату гипотенузы, получаем уравнение:
x² + (23+x)² = 37²
x² + 529 + 46x + x² = 1369
2x²+46x+529-1369 = 0
2x²+46x-840 = 0 |:2
x²+23x-420 = 0
D = 23² - 4·1·(-420) = 529+1680 = 2209 = 47²
x₁ = (-23-47)/2 = -60/2 = - 30 < 0 не удовлетворяет ОДЗ.
x₂ = (-23+47)/2 = 24/2 = 12 удовлетворяет ОДЗ.
Получаем:
12 дм - длина одного катета;
23+12 =35 дм - длина другого катета;
37 дм - гипотенуза
Найдем периметр прямоугольного треугольника:
12 + 35 + 37 = 84 (дм)
ответ: 84 дм
Для любого x из области определения функции f(x) верно следующее: f(x)=-f(-x). Это определение нечётной функции, из этого следует, что область определения должна быть симметричной относительно нуля, ведь каждому x>0 соответствует такой -x<0, что f(x)=-f(-x).
а) [-5;-3)U(3;5) этот промежуток не может являться областью определения т.к. -5 включается, а 5 не включается (для x=-5 не существует -x=5).
б) (-∞;0) U (0; +∞) здесь симметрия соблюдается.
в) [-8; 7] этот промежуток не может явл. обл. опр. т.к. -8 включается, а 8 не включается (для x=-8 не существует -x=8).
г) (-1;1) симметрия соблюдается.
ответ: а) [-5;-3)U(3;5)
в) [-8; 7]
Объяснение:
D(y)=R
Объяснение:
Областью определения функции являются все вещественные числа (множество R=(-∞; +∞)), кроме тех, при которых функция не определено. Область определения функции обозначается через D(y).
Для функции y=x² нет вещественных чисел, при которых выражение x² было бы неопределенным. Поэтому область определения функции y=x² является D(y)=R.