Обратившись к основному тригонометрическому тождеству, получим:
2sin^2(x) - 5sin(x)cos(x) + 5cos^2(x) = sin^2(x) + cos^2(x);
sin^2(x) - 5sin(x)cos(x) + 4cos^(x) = 0.
Разделим полученное уравнение на cos^2(x):
tg^2(x) - 5tg(x) + 4 = 0.
Произведем замену переменных t = tg(t):
t^2 - 5t + 4 = 0.
Корни квадратного уравнения вида ax^2 + bx + c = 0 определяются
по формуле: x12 = (-b +- √(b^2 - 4 * a * c) / 2 * a.
t12 = (5 +- 3) / 2;
t1 = 1; t2 = 4.
tg(x) = 1;
x1 = π/4 +- π * n.
x2 = arctg(4) +- π * n.
Объяснение:
5sin²(x) + 3sin(x)cos(x) - 6cos²(x) = 1
• Упростим уравнение:
5sin²(x) + 3sin(x)cos(x) - 6cos²(x) = sin²(x) + cos²(x)
<=>
4sin²(x) + 3sin(x)cos(x) - 7cos²(x) = 0
• Получили однородное тригонометрическое уравнение II типа, значит поделим всё на cos²(x), причём:
cos(x) ≠ 0
x ≠ π/2 + πn, n ∈ ℤ
• Получаем:
4tg²(x) + 3tg(x) - 7 = 0
Пусть tg(x) = t, тогда tg²(x) = t²
4t² + 3t - 7 = 0
D = 9 - 4 • 4 • (-7) = 9 + 112 = 121 = 11²
t₁ = (-3 + 11)/8 = 1
t₂ = (-3 - 11)/8 = -14/8 = -7/4
• Перейдём к системе:
[ tg(x₁) = 1
[ tg(x₂) = -7/4
<=>
[ x₁ = π/4 + πn, n ∈ ℤ
[ x₂ = -arctg(7/4) + πn, n ∈ ℤ
ответ: x₁ = π/4 + πn, n ∈ ℤ ; x₂ = -arctg(7/4) + πn, n ∈ ℤ
бчбабвддажазаззкзкаь а а алалаьу у