Пусть в основании лежит квадрат со стороной a, высота равна h. Тогда квадрат длины диагонали d вычисляется по формуле d^2 = 2a^2 + h^2, объём по формуле a^2 * h,
Для решения задач на движение существует готовая формула s = v * t - формула пути s - расстояние 1 м 25 см = 125 см v - скорость 54 см/ч t - время ? t = 125 cм : 54 см/ч = 2 целых 17/54 часа = 2 ч 18,(8) мин ответ: за 2 часа и примерно 19 минут.
Но уж если в условии задачи дали размеры гусеницы, попробуем использовать и эту величину. (начало пути) < 125 см > + 1 cм = 126 см (конец пути) t = 126 см : 54 см/ч = 126/54 = 2 18/54 = 2 1/3 часа - за это время гусеница преодолеет расстояние 125 см (вынесет свой хвост за отметку 125 см) 2 1/3 часа = 2 ч + (60 : 3) мин = 2 ч 20 мин. ответ: за 2 ч 20 мин.
2a^2 + h^2 = (8*sqrt(3))^2
2a^2 + h^2 = 192
2a^2 = 192 - h^2
a^2 = (192 - h^2)/2
V(h) = (192 - h^2) * h / 2 = 96h - h^3 / 2
Нужно найти максимальное значение V, если h принимает значения из отрезка [0, 8sqrt(3)].
V'(h) = 96 - 3h^2 / 2 = 0
3h^3 = 192
h^2 = 64
h = 8
V'(h) > 0 при h < 8; V'(h) < 0 при h > 8, поэтому h = 8 — точка максимума.
Vmax = V(8) = (192 - 64) * 8 / 2 = 512