Дано:∆ АВС - прямоугольный, угол С =90º
СК - бисскетриса.
ВК=30
АК=40
Решение задачи начнем с рисунка.
Биссектриса внутреннего угла треугольника делит сторону на отрезки, пропорциональные прилежащим сторонам.
Это относится ко всем треугольникам.
Из этого отношения следует отношение катетов:
ВС:АС=30:40=3:4
Пусть коэффициент отношения катетов будет х.
Тогда
ВС=3х
АС=4х
По т.Пифагора
АВ²=ВС²+АС²
70²=9х²+16х²=25х²
х²=196
х=14
АС=4*14=56 с
ВС=3*14=42 см
Опустим из точки К перпендикуляр КН на АС ( расстояние от точки до прямой -перпендикуляр)
КН║ВС, ∠ А общий
∆ АКН подобен ∆АВС
Из подобия
АВ:АК=ВС:КН
70:40=42:КН
КН=1680:70=24 см
Тем же из подобия КМВ и АВС найдем МК=24 (можно проверить).
Но треугольники ВМК и АНК не равны, как может показаться.
В них равные катеты лежат против разных углов.
АН=56-24=32 см
ВМ=42-24=18 см
Найдя КН, можно не находить отдельно расстояние КМ.
МКНС - квадрат, т.к. ∠С=90º по условию, ∠КАМ=∠КНС=90º по построению, а диагональ -биссектриса угла С
Подробнее - на - ответ:
Объяснение:
В нашем уравнении: b= -(a-6); c=(a^2-9).
Старший коэффициент "a" = (a+3). Он не должен равняться нулю ( при а=-3), т.к. уравнение уже не будет квадратным. Поэтому,а=-3 нас не устраивает.
1). b=0
a-6=0
a=6
2)c=0
a^2-9=0
a^2=9
a1=-3 ( нам не подходит этот вариант)
a2=3
При а =3 уравнение выглядит так: 6x^2+3x=0
При а=6 уравнение выглядит так:9x^2+27=0
ответ: a=3; a=6