Объяснение:
Уравнение линейной функции:
у=kx×b
Заданная по условию линейная
функция:
у=0,5х-3
k=0,5; b=-3
а)
Чтобы записать уравнение ли
нейной функции, которая парал
лельна заданной, нужно задать
коэффициент k=0,5.
Значение "b" может быть любым,
но b=/=-3.
Например:
у=0,5х+3
Прямая у=0,5х+3 параллельна
заданной прямой у=0,5х-3 (так
как их угловые коэффициенты
равны).
б)
Чтобы прямая совпадала с заданой
прямой , должны совпадать оба ко
эффициента и "k" и "b" :
k=0,5=1/2
b=-3
Например:
у=1/2х-3
Прямая у=1/2х-3 совпадает с задан
ной прямой у=0,5х-3 (так как их уг
ловые коэффициенты "k"и коэф
фициенты "b" совпадают).
с)
Прямые пересекаются, если раз
личны их угловые коэффициен
ты:
k=0,2
Значение "b" может быть любым.
Например:
у=0,2х-5
Прямая у=0,2х-5 пересекает за
данную прямую у=0,5х-3 (так как
их угловые коэффициенты раз
личны).
a) sin(a-pi)=-sin a
cos(a-3pi/2)=-sin a
ctg(a-pi/2)=-tg a=-sin a/cos a
tg(pi+a)=tg a=sin a/cos a
sin(a-pi)+cos(a-3pi/2)/ctg(a-pi/2)-tg(pi+a) =-sin a + (sin a *cos a)/sin a + tg a = -sin a + cos a + tg a
б)
cos(3pi/2-a)=-sin a
cos(6pi-a)=cos a
sin(a+8pi)=sin a
sin(3pi/2+a) =-cos a
Если cos(6п-a)/1+sin(a+8п) - это cos(6п-a)/(1+sin(a+8п)), то
1-cos(3pi/2-a)+cos(6pi-a)/(1+sin(a+8pi))-sin(3pi/2+a)=1+sin a+cos a/(1+sina)
Если cos(6п-a)/1+sin(a+8п) как то по другому, то смотри сам. Думаю +, -, * и / впихнешь как-то.
в) tg(pi+a)=tg a
tg(5pi/2-a)=ctg a
sin(pi/2-a)=cos a
tg a* ctg a=1
cosa*tg(pi+a)*tg(5pi/2-a)/sin(pi/2-a)-1=cos a * tg a* ctg a/cos a -1 = cos a/cos a - 1 =1-1=0
Все решается с формул приведения.