Допустим, мы вынимаем по одной перчатке из левого и правого ящика, пока не получим две белых или две черных. Две красных мы не можем получить, потому что красные только правые. В самом плохом случае мы вынем из левого ящика 2 белых, а из правого 2 красных. Потом из левого 4 черных, а из правого 4 белых. Остались в левом белые, а в правом белые и черные. Достаточно вынуть 1 из правого ящика, левые у нас уже есть и белые, и черные. Всего нужно 2 + 2 + 4 + 4 + 1 = 13 перчаток.
Допустим, мы действуем по-другому. Вынимаем сначала перчатки только из левого ящика. Нам нужно обязательно хотя бы по 1 черную и белую. В самом плохом случае мы вынем все 8 белых и только 9-ую черную. Теперь вынимаем из правого ящика. В самом плохом случае 2 красных и третью белую или черную. Всего понадобилось 9 + 3 + 1 = 13.
Допустим, мы начали с правого ящика. Тогда мы вытащим 2 красных, 9 белых и 1 черную. Из левого достаточно вынуть 1 перчатку. Всего 2 + 9 + 1 + 1 = 13 перчаток.
В общем, при любом мы все равно получаем 13 перчаток.
Решение: Обозначим объём воды в бассейне за 1(единицу), а наполнение водой бассейна в час первой трубой за (х), а второй трубой за час (у), тогда наполнение бассейна водой обеими трубами наполняется за: 1/ ((х+у)=6 (часов) Если наполнить бассейн первой трубой, бассейн наполнится за: 1/х=10 (часов) Решим эту систему уравнений: 1/(х+у)=6 1/х=10
1=6*(х+у) 1=10*х 1=6х+6у 1=10х Из второго уравнения найдём значение (х) х=1:10 х=0,1 Подставим значение (х) в уравнение: 1=6х+6у 1=6*0,1+6у 6у=1-0,6 6у=0,4 у=0,4 :6 у=4/10 : 6=4/10*6=4/60=2/15 И так как заполнение бассейна второй трубой в час равно у=2/15, то вторая труба заполнит бассейн за : 1 : 2/15=15/2=7,5 (часа)
ответ: Бассейн заполнится второй трубой за 7,5 часов
y`=–y/(2√xy–x)
Делим и числитель и знаменатель дроби справа на х:
y`=(y/x)/(2√x/y–1)
Справа функция, зависящая от (y/x)
Значит, это однородное уравнение первой степени
Решается заменой
y/x=u
y=x·u
y`=x`·u+x·u`
x`=1
y`=u+x·u`
u+xu`=–(xu)/(2√x·ux–x)
Это уравнение с разделяющимися переменными
не нравится.
Громоздко.
Поскольку переменные х и у равноправны, то можно сделать и так:
dx/dy=x`
y·x`=–2√xy+x
x`=–2√x/y+(x/y)
Замена лучше так:
x/y=u
x=u·y
x`=u`·y+u·y` ( y`=1)
x`=u`·y+u
тогда
u`·y+u=–2√u+(u)
u`·y=–2√u – уравнение с разделяющимися переменными
y·du=–2√udy
du/2√u=–dy/y
Интегрируем:
∫ du/2√u=– ∫ dy/y
√u=–lny+c
или вместо c лучше написать lnC
√u=–lny+lnC
√u=ln(C/y)
C/y=e^(√u
u=x/y
С/у=e√x/y – общее решение