М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
olesyag8080
olesyag8080
17.04.2021 02:00 •  Алгебра

При каком значении x верно 0 равенство:
x⁴-13x²+4=0​

👇
Открыть все ответы
Ответ:
HermioneGranger19
HermioneGranger19
17.04.2021
Перенумеруем котенков от "1" до "17".

Котята от "1", "2", ... , "13" . среди них обязательно 2 рыжих, пусть это будут (не ограничивая общности "12", "13")
добавим вместо них котят "14", "15", у нас снова 13 котят, среди них два рыжих, пусть это "14", "15"
вместо "14", "15" возьмем "16". "17", опять же 13 котят, среди них два рыжих, не ограничивая общности (все равно кого из них считать рыжим  --нумеровали мы их произвольно)  пусть это будут  "16", "17"

итого у нас уже есть шесть рыжих котят "12", "13", "14", "15", "16", "17"

рассмотрим котят "4", "5", "6", ..."17", (учтем что некоторые "уже рыжие"), среди 14-х котят один белый, пусть это будет "11",
аналогично рассмотрим последовательно партии котят "3", "4", "10", "12", ..., "17"
"2", "3", ..."9", "12", ..."17"
"1", "2", ..."8", "12", ..., "17"
и определим что "8","9", "10", "11" - серые котята

итого у нас имеется известных 6 рыжих котят, и 4 серых, в любой группе, из этих 6 рыжих, 4 серых, любые 3 другие из оставшихся 17-10=7 котят будут белыми (13-6-4=3 котята, 3 из 13 в группе белые)

итого белых котят 7
ответ: 7
4,8(98 оценок)
Ответ:
Марк2992
Марк2992
17.04.2021
Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К.
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет: 1*1*1*2!*2!*3! = 24
Тогда вероятность (согласно классическому определению): \frac{24}{10!} = \frac{1}{151200}

Попробуем другой, более простой
Перестановки с повторением.
Всего у нас \frac{(1 + 1 + 1 + 2 + 2 + 3)!}{3!*2!*2!} = \frac{10!}{3!*2!*2!}
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
\frac{1}{\frac{10!}{3!*2!*2!}} = \frac{3!*2!*2!}{10!} = \frac{24}{10!} = \frac{1}{151200}
4,6(93 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ