Решение: Высота, опущенная на гипотенузу, делит прямоугольник на два прямоугольных треугольника, где два отрезка гипотенузы прямоугольного треугольника являются проекциями катетов основного прямоугольного треугольника и кроме того они являются катетами двух образовавшихся прямоугольников. Рассмотрим один из прямоугольных треугольников, где высота, опущенная на гипотенузу является катетом (72дм), катет прямоугольника (120дм) является гипотенузой получившегося прямоугольника. По теореме Пифагора найдём другой катет (c) одного из прямоугольников: c²=120²-72² c²=14400-5184 c²=9216 c=√9216=96 (дм) - это одна из проекций катета (первого образовавшегося прямоугольного треугольника) Найдём проекцию второго катета основного прямоугольника: для этого воспользуемся свойством высоты, проведённой к гипотенузе, "высота, проведённая к гипотенузе, есть средне-геометрическое между проекциями катетов гипотенузы." Обозначим проекцию второго катета за (d) Отсюда: 72=√(96*d) 72²=96d 5184=96d d=5184 : 96 d=54 (дм-проекция второго катета) Найдём гипотенузу основного прямоугольника. Она равна сумме двух проекций катетов прямоугольного треугольника: 96+54=150 (дм) Найдём второй катет основного прямоугольника по теореме Пифагора. Известен катет, равный 120дм; гипотенуза 150дм Второй катет (b) основного прямоугольника равен: b²=150²-120² b²=22500--14400 b²=8100 b=√8100=90 (дм) - длина второго катета
ответ: Второй катет равен 90дм; проекция второго катета 54дм
1. Всего пятизначных чисел: 9*10*10*10*10 = 90000. Количество пятизначных чисел, в которых первая цифра - пятерка, равно: 4*9*9*9 = 2916 (Одна из оставшихся цифр - пятерка, поэтому можно варьировать только 3 разряда, причем цифрами от 0 до 4 и от 6 до 9 - отсюда три множителя 9. Пятерка может быть любым из четырех оставшихся разрядов - отсюда множитель 4). Количество пятизначных чисел, в которых первая цифра - не пятерка, равно: 8*6*9*9 = 3888 (Первую цифру можно выбрать это не 0 и не 5. Из оставшихся четырех цифр можно варьировать 2 разряда, причем цифрами от 0 до 4 и от 6 до 9 - отсюда два множителя 9. Две пятерки могут располагаться на четырех местах отсюда множитель 6). Искомая вероятность равна: (2916+3888)/90000 = 0,0756.
2. Всего шестизначных чисел: 9*10*10*10*10*10 = 900000. Количество шестизначных чисел, у которых первая цифра - семерка, равно: 10*9*9*9 = 7290 (Две оставшихся цифры - семерки, поэтому варьировать можно только три разряда, причем цифрами от 0 до 6 и от 8 до 9 - отсюда три множителя 9. Две семерки могут располагаться на пяти местах отсюда множитель 10). Количество шестизначных чисел, у которых первая цифра - не семерка, равно: 8*10*9*9 = 6480 (Первую цифру можно выбрать это не 0 и не 7. Из оставшихся пяти разрядов варьировать можно 2, причем цифрами от 0 до 6 и от 8 до 9 - отсюда два множителя 9. Две семерки могут располагаться на пяти местах отсюда множитель 10). Искомая вероятность равна: (7290+6480)/900000 = 0,0153.
Высота, опущенная на гипотенузу, делит прямоугольник на два прямоугольных треугольника, где два отрезка гипотенузы прямоугольного треугольника являются проекциями катетов основного прямоугольного треугольника и кроме того они являются катетами двух образовавшихся прямоугольников.
Рассмотрим один из прямоугольных треугольников, где высота, опущенная на гипотенузу является катетом (72дм), катет прямоугольника (120дм) является гипотенузой получившегося прямоугольника.
По теореме Пифагора найдём другой катет (c) одного из прямоугольников:
c²=120²-72²
c²=14400-5184
c²=9216
c=√9216=96 (дм) - это одна из проекций катета (первого образовавшегося прямоугольного треугольника)
Найдём проекцию второго катета основного прямоугольника:
для этого воспользуемся свойством высоты, проведённой к гипотенузе,
"высота, проведённая к гипотенузе, есть средне-геометрическое между проекциями катетов гипотенузы."
Обозначим проекцию второго катета за (d)
Отсюда:
72=√(96*d)
72²=96d
5184=96d
d=5184 : 96
d=54 (дм-проекция второго катета)
Найдём гипотенузу основного прямоугольника. Она равна сумме двух проекций катетов прямоугольного треугольника:
96+54=150 (дм)
Найдём второй катет основного прямоугольника по теореме Пифагора.
Известен катет, равный 120дм; гипотенуза 150дм
Второй катет (b) основного прямоугольника равен:
b²=150²-120²
b²=22500--14400
b²=8100
b=√8100=90 (дм) - длина второго катета
ответ: Второй катет равен 90дм; проекция второго катета 54дм