Пусть х дм - длина одного катета, тогда
(23+х) дм - длина другого катета.
37 дм - гипотенуза
ОДЗ: 0<x<37
Согласно теореме Пифагора для прямоугольного треугольника сумма квадратов катетов равна квадрату гипотенузы, получаем уравнение:
x² + (23+x)² = 37²
x² + 529 + 46x + x² = 1369
2x²+46x+529-1369 = 0
2x²+46x-840 = 0 |:2
x²+23x-420 = 0
D = 23² - 4·1·(-420) = 529+1680 = 2209 = 47²
x₁ = (-23-47)/2 = -60/2 = - 30 < 0 не удовлетворяет ОДЗ.
x₂ = (-23+47)/2 = 24/2 = 12 удовлетворяет ОДЗ.
Получаем:
12 дм - длина одного катета;
23+12 =35 дм - длина другого катета;
37 дм - гипотенуза
Найдем периметр прямоугольного треугольника:
12 + 35 + 37 = 84 (дм)
ответ: 84 дм
b² = a·c
По свойству арифметической прогрессии:
5b/3 = (a + c)/2
b = 3(a + c)/10
b² = 9(a² + 2ac + c²)/100
b² = ac
9(a² + 2ac + c²)/100 = ac
9a² - 82ac + 9c² = 0 разделим на а²
9(c/a)² - 82c/a + 1 = 0
c/a = t
9t² - 82t + 1 = 0
D/4 = 41² - 9·9 = 1681 - 81 = 1600
t = (41+ 40)/9 = 9 t = (41 - 40)/9 = 1/9
c/a = q²
q² = 9 или q² = 1/9
q = 3 или -3 q = 1/3 или -1/3
Так как прогрессия возрастающая, подходит одно значение 3