Примем за 1 - объем цистерны
Пусть t цис./ч - производительность "медленного" насоса.
Тогда 3t цис./ч - производительность "быстрого" насоса.
(t+3t) цис./ч - производительность системы при совместной работе этих двух насосов.
(t+3t) - объем работы системы из двух насосов за 2ч 15мин.
Получим уравнение:
9t = 1
Значит, - цис./ч - производительность "медленного" насоса.
Тогда - цис./ч - производительность "быстрого" насоса.
Следовательно, ч - потребуется "быстрому" насосу на заполнение цистерны.
ответ: 3 ч.
скорость грузовой машины - 1/3 проезжает за час
скорость легковой машины - 1/2 тоже за час
машины выехали из городов навстречу друг другу, и через какое-то время t (часов), они встретятся, при этом расстояние, которое преодолеет грузовая машина S₁ = (1/3)*t = t/3, а расстояние которое преодолеет легковая машина S₂ = (1/2)*t = t/2, при этом S₁+S₂ = 1, то есть
(t/3) + (t/2) = 1, решаем это уравнение:
(2t/6) + (3t/6) = 1,
(2t+3t)/6 = 1,
5t/6 = 1,
t = 6/5 (часа) = 1+(1/5) часа = 1 час 12мин.