Все задачи на движение требуют для начала вспомнить основную формулу, связывающую скорость, путь и время:
V=S/t/
Задачи на движение по реке чаще всего содержат в себе:
Моторные лодки или катера, обладающие собственным двигателем или судна которые плывут с ручной гребли.
Плот или иные судна, которые могут плыть ТОЛЬКО по течению и со скоростью, равной скорости течения.
Также в таких задачах всегда следует учитывать, что при движении по течению к собственной скорости судна прибавляется скорость течения. А когда движение происходит против течения, наоборот, из собственной скорости судна следует ВЫЧЕСТЬ скорость течения.
Учитывая все выше изложенное составим уравнение для задачи:
Время на весь путь 14 часов.
ВРЕМЯ движения по теч-ю ПЛЮС ВРЕМЯ движ-я против течения = 14ч.
Из основной формулы выразим ВРЕМЯ (t).
t=S/V
t(по теч)=S(по теч) / V(по теч)
t(прот теч)=S(прот теч) / V(прот теч)Пусть х собственная скорость,
тогда (х+2) км/ч скорость по течению реки, а (х-2) км/ч скорость против течения.
Получим
45/(х+2)+45/(х-2)=14
45х-90+45х+90=14х²-56
90х=14х²-56
14х²-90х-56=0
7х²-45х-28=0
D=2025-4*7*(-28)=2809
х=(45+53)/14=7 км/ч собственная скорость спортивной лодки
ответ:7 км/ч
Поскольку парабола и прямая имеют общую точку пересечения, то приравняю эти два равенства:
6x+b = x² + 8
x²-6x+8-b=0
Поскольку прямая должна касаться параболы,(то есть они имеют ровно одну общую точку), то данное квадратное уравнение должно иметь один корень(одну абсциссу точки касания, так как точка у нас одна). А такое возможно лишь при условии, что дискриминант данного уравения равен 0. Выделим сначала дискриминант из данного квадратного уравнения:
a = 1;b = -6;c = 8-b
D = b²-4ac = 36 - 4(8-b) = 36 - 32 + 4b = 4 + 4b.
D = 0
4+4b = 0
4b = -4
b = -1
Значит, при b = -1 прямая касается параболы.