Пусть на расстояни х км от пункта А состоялась встреча - єто так же расстояние которое проехал мотоциклист за 1 ч 20 мин=80 мин, поєтому его скорость равна х/80 км/мин, все расстояние АВ мотоциклист одолел за 80/(x/80)=80*80/x мин, а до встречи он ехал (до встречи ехал велосипедист)6400/x-80 мин, после встречи велосипедист проехал 80-х км, значит его скорость равна (80-х)/180 км/мин, все расстояние велосипедист проехал за 80/((80-х)/180)=80*180/(80-x) мин, а до встречи он ехал 80*180/(80-x)-180 мин.По условию задачи составляем уравнение
80*80/x-80=80*180/(80-x)-180 8*(80/x-1)=18*(80/(80-x)-1) 4*(80-x)/x=9*(80-80+x)/(80-x) 4*(80-x)/x=9x/(80-x) 4*(80-x)^2=9x^2 4*(6400-160x+x^2)=9x^2 25600-640x+4x^2=9x^2 5x^2+640x-25600=0 x^2+128x-5120=0 D=36864=192^2x х1=(-128-192)/2<0 - не подходит под условия задачи (расстояние не может быть отрицательным) x2=(-128+192)/2=32 х=32 ответ: 32 км
Объяснение:
Первым делом раскроем скобки:
(Х^2+2х+х+2)-(4х^2+20х-3х-15)=(х^2-9х)
Преобразовываем и окончательно раскрываем скобки, внимательно смотря на знаки:
Х^2+3х+2-4х^2-17х+15=х^2-9х
Так как у нас получится полное квадратное уравнение, все переносим вправо, для удобства и ищем подобные:
Х^2-х^2-4х^2+3х+9х-17х+2+15=0
-4х^2-5х+17=0
Домнажаем на - 1, для удобства:
4х^2+5х-17=0
Ищем дискриминант, а потом ищем корни:
Д=25+272=297
Приблизительно корень из 297, это 17.23
Х1=(-5+17.23):8=12.23:8≈1.5
Х2=(-5-17.23):8=-22.23:8≈2.8