Пусть количество белых шариков равно Б, черных - Ч. Ясно, что хотя бы одно из этих чисел больше или равно 2, поскольку речь идет о двух одноцветных шариках. При этом минимальное количество шариков, которые нужно вынуть, чтобы получить 2 одноцветных, равно 3 (первые 2 могут быть разноцветными, третий совпадет с одним из первых двух). С другой стороны, чтобы гарантировано получить 2 разноцветных шарика, нужно взять max(Б,Ч) +1 шарик. Значит,
max(Б,Ч)+1=3, max(Б,Ч)=2.
Итак, возможны ситуации: Б=2, Ч=1 (симметричная ситуация Ч=2, Б=1), а также Б=Ч=2.
Пусть количество белых шариков равно Б, черных - Ч. Ясно, что хотя бы одно из этих чисел больше или равно 2, поскольку речь идет о двух одноцветных шариках. При этом минимальное количество шариков, которые нужно вынуть, чтобы получить 2 одноцветных, равно 3 (первые 2 могут быть разноцветными, третий совпадет с одним из первых двух). С другой стороны, чтобы гарантировано получить 2 разноцветных шарика, нужно взять max(Б,Ч) +1 шарик. Значит,
max(Б,Ч)+1=3, max(Б,Ч)=2.
Итак, возможны ситуации: Б=2, Ч=1 (симметричная ситуация Ч=2, Б=1), а также Б=Ч=2.
y= -4
x= 3
Объяснение:
x=15+3y
4(15+3y)+3y=0
60+15y=0
15y= -60
y= -4
4x-12=0
4x=12
x=3