
Определим общее число расстановок на пяти позициях 5 шариков:

Однако, среди этих расстановок есть недопустимые (то есть те, при которых между зеленым и желтым шариком располагаются два или более шарика). Найдем число недопустимых расстановок.
Найдем число недопустимых размещений зеленого и желтого шарика. Их можно просто перечислить:
1) зеленый на 1-ом месте, желтый на 4-ом месте
2) зеленый на 1-ом месте, желтый на 5-ом месте
3) зеленый на 2-ом месте, желтый на 5-ом месте
4) зеленый на 4-ом месте, желтый на 1-ом месте
5) зеленый на 5-ом месте, желтый на 1-ом месте
6) зеленый на 5-ом месте, желтый на 1-ом месте
В каждом из этих случаев оставшиеся три шарика могут размещаться на свободных местах
Таким образом, всего имеется
недопустимых расстановок.
Значит, допустимых расстановок имеется:

ответ: 84

, так как уравнение обращается в линейное.
уравнение не имеет решений (вообще имеет, но это в школе не проходят).
то уравнение имеет 1 решение (корень).
- уравнение имеет 2 корня.

Объяснение:
1) = 4/8a= 2/4a