Дана система ур-нийx−2y=−12x−2y=−12 7x−10y=77x−10y=7
Из 1-го ур-ния выразим xx−2y=−12x−2y=−12 Перенесем слагаемое с переменной y из левой части в правую со сменой знакаx−2y+2y=−−1⋅2y−12x−2y+2y=−−1⋅2y−12 x=2y−12x=2y−12 Подставим найденное x в 2-е ур-ние7x−10y=77x−10y=7 Получим:−10y+7(2y−12)=7−10y+7(2y−12)=7 4y−84=74y−84=7 Перенесем свободное слагаемое -84 из левой части в правую со сменой знака4y=914y=91 4y=914y=91 Разделим обе части ур-ния на множитель при y4y4=9144y4=914 y=914y=914 Т.к.x=2y−12x=2y−12 тоx=−12+1824x=−12+1824 x=672x=672
Y(x)=x²+4, х₀=1, k=4 угловой коэффициент касательной к функции равен значению производной функции в точке касания, т.е. k=y'(x₀) 1) найдем производную: y'(x)=(x²+4)'=2x k=y'(x₀)=y'(1)=2*1=2 - угловой коэффициент касательной к графику функции в точке с абсциссой x₀=1 2) теперь известен угловой коэффициент k=4, но неизвестна точка касания x₀, т.е. y'(x₀)=k 2*x₀=4 x₀=2 чтобы найти ординату точки, подставим x₀ в функцию y(x): y₀=y(x₀)=2²+4=4+4=8 (2;4) - координаты точки, в которой угловой коэффициент касания равен k=4 3) уравнение касательной в общем виде: f(x)=y(x₀)+y'(x₀)*(x-x₀) x₀=1, y'(x₀)=2 - найдено выше под 1) y(x₀)=1²+4=5 подставляем найденные значения в общий вид: f(x)=5+2(x-1)=5+2x-2=2x+3 - уравнение касательной к графику функции в точке с абсциссой x₀=1
x=16, y=8
Объяснение:
x-y=8
-x+2y=0
{ x-y=8
+ {-x+2y=0
(x-y)+(-x+2y)=8
y=8
x-(8)=8
x=16
x=16,y=8.