М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Angelochek1915
Angelochek1915
20.07.2020 20:51 •  Алгебра

Решите 3 задания: два "примера" и уравнение


Решите 3 задания: два примера и уравнение

👇
Открыть все ответы
Ответ:

1.

a)

x² + 4x + 10 ≥ 0

Рассмотрим функцию у = x² + 4x + 10.

Функция квадратичная, график - парабола, ветви направлены вверх.

Нули функции:

x² + 4x + 10 = 0

D = 16 - 40 = - 24 < 0

нулей нет, значит график не пересекает ось Ох.

Схематически график изображен на рис. 1.

у > 0  при x ∈ (- ∞; + ∞)

ответ: 2) Решением неравенства является вся числовая прямая.

b)

- x² + 10x - 25 > 0       | · (- 1)

x² - 10x + 25 < 0

Рассмотрим функцию у = x² - 10x + 25.

Функция квадратичная, график - парабола, ветви направлены вверх.

Нули функции:

x² - 10x + 25 = 0

(x - 5)² = 0

x = 5

Схематически график изображен на рис. 2.

у < 0  при x ∈ {∅}

ответ: 1) Неравенство не имеет решений.

c)

x² + 3x + 2 ≤ 0

Рассмотрим функцию у = x² + 3x + 2.

Функция квадратичная, график - парабола, ветви направлены вверх.

Нули функции:

x² + 3x + 2 = 0

D = 9 - 8 = 1

x_{1}=\dfrac{-3+1}{2}=-1

x_{2}=\dfrac{-3-1}{2}=-2

Схематически график изображен на рис. 3.

у ≤ 0  при x ∈ [- 2; - 1]

ответ: 4) Решением неравенства является закрытый промежуток.

d)

- x² + 4 < 0         |  · (- 1)

x² - 4 > 0

Рассмотрим функцию у = x² - 4.

Функция квадратичная, график - парабола, ветви направлены вверх.

Нули функции:

x² - 4 = 0

x² = 4

x = ± 2

Схематически график изображен на рис. 4.

у > 0  при x ∈ (- ∞; - 2) ∪ (2; + ∞)

ответ: 6) Решением неравенства является объединение двух промежутков.

___________________________

2.

(x - a)(2x - 1)(x + b) > 0

x ∈(- 4; 1/2) ∪ (5; + ∞)

Решение неравенства показано на рис. 5.

Найдем нули функции у = (x - a)(2x - 1)(x + b).

(x - a)(2x - 1)(x + b) = 0

(x - a) = 0   или   (2x - 1) = 0    или   (x + b) = 0

x = a                      x = 1/2                  x = - b

Из решения неравенства следует, что нулями являются числа - 4, 1/2 и 5. Значит

\left\{ \begin{array}{ll}a=-4\\-b=5\end{array}  или   \left\{ \begin{array}{ll}a=5\\-b=-4\end{array}

\left\{ \begin{array}{ll}a=-4\\b=-5\end{array}  или   \left\{ \begin{array}{ll}a=5\\b=4\end{array}

ответ: a = - 4, b = - 5  или  a = 5, b = 4.


1)укажите соответствующий вывод для каждого неравенства.обоснуйте свой ответ​
4,4(69 оценок)
Ответ:
brain09
brain09
20.07.2020

* * * * * * * * * * * * * * * * * * * * *

При каком значении параметра a уравнение имеет ровно 2 различных решения:  (x + 4/x)² + (a - 4)(x + 4/x)  - 2a²+a +3 =0

ответ:   a ∈ ( - 5 ; - 0,5 )  ∪  (3 ; 3,5 ).

Объяснение:  Частный случай (для двух неотрицательных чисел) неравенства Коши: (a+b)/2 ≥ √ab . || сред. арифм. ≥ ср. геом. ||

Поэтому: x + 4/x  ≥  4 ,если x >0   или  x + 4/x  ≤ - 4 ,если x < 0 .

* * * если x < 0:  ( (-x) + ( -4/x) ) ≥ √( ( -x)*(-4/x) ) = 2 ⇔ x + 4/x  ≤ - 4 * * *

* * *  x + 4/x  ∉  ( - 4 ; 4 ) * * *

(x + 4/x)² - (4 -a)(x + 4/x) - 2a²+a +3 =0  

  Это уравнение  квадратное  относительно x + 4/x ;  после замена           ( для удобства )  x + 4/x = t  ,    t  ∉  ( - 4 ; 4 )   получаем :  

t² - (4 - a)t -2a²+a +3 =0 ,  

D =(4-a)²-4(-2a²+a +3)=16 -8a +a²+8a²-4a -12 =9a²-12a+4 =(3a -2)² ≥ 0

t₁= (4-a+3a -2)/2 =a+1

t₂ =(4-a -3a +2)/2 =3 -2a.

Если  D = 3a -2 = 0 ⇔  a = 2/3 ⇒ t₁ =t₂ = 5/3  ∈ ( - 4; 4 ) → исходное  

уравнение не имеет корней .  

Исходное  уравнение будет имеет ровно 2 различных решения

Система неравенств ( пишу в одной строке, разделены запятой )

а)   { a+1 > 4  ; - 4 < 3 -2a < 4 .

⇔ { a > 3 ; - 4 < 2a -3 < 4.⇔ {a > 3 ; - 0,5 < a < 3,5. ⇔

⇒  a ∈ (3 ; 3,5 ).

(3)                          

( - 0,5)(3,5)

б)  { 3 -2a >  4  ; - 4 < a+1 < 4   .

⇔{ 2a - 3 < - 4 ;  -4 - 1 < a  <  4 -1 .⇔ { a< -0,5 ;  -5 < a < 3.

⇒ a ∈ ( -5 ; -0,5 ).

( - 0.5)

( -5)(3)                          

* * * * * * * * * * * * * * * * * * * * *

в) { a+1  < - 4  ; - 4 < 3 -2a <  4 .  

⇔ { a+1  < - 4  ; - 4 < 2a -3 <  4 . ⇔ {  a+1 < - 4 ; 1 < 2a+2< 9. ⇒a  ∉∅.  

{  a+1 < - 4 ; 0,5 < a+1 < 4,5 . ⇒  a  ∉∅.

г) {  3 -2a < - 4  ; - 4 < a+1  <  4 .

⇔{ 2a-3 > 4  ; -4 -1 < a < 4 -1 .⇔{ a> 3,5 ; -5 < a < 3 .  ⇒a  ∉∅

4,7(81 оценок)
Это интересно:
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ