Грани игральной кости пронумерованы от 1 до 6. Пусть Х- случайная величина равная выпавшему числу на верхней грани при бросании игральной кости. Составьте закон распределения этой случайной величины.
Любое нечётное число можно записать в виде 2n-1, где n∈z (множество целых чисел). у нас три последовательных нечётных числа. каждое последующее нечётное число на 2 больше предыдущего (например, 1, 3, 5, 7 и так далее). обозначим минимальное из наших чисел 2n-1. тогда следующее будет 2n-1+2=2n+1, а последнее 2n+1+2=2n+3. эти числа в порядке возрастания расположатся, очевидно: 2n-1; 2n+1; 2n+3. по условию : (2n+1)(2n+-1)(2n+1)=76 (2n+1)(2n+3-(2n-=0 (2n+1)(2n+3-2n+1)-76=0 (2n+1)4-76=0 8n+4-76=0 8n-72=0 n=72/8 n=9 тогда искомые числа будут: 2n-1=2*9-1=18-1=17 2n+1=2*9+1=18+1=19 2n+3=2*9+3=18+3=21
Вероятность выполнения нормы первым, вторым и третьим спортсменом равны соответственно p1=0.8, p2=0.7, p3=0.9, невыполнения - q1=1-p1=0.2, q2=1-p2=0.3, q3=1-p3=0.1. а) По крайней мере один спортсмен выполнит норму: то есть обеспечим отсутствие случая, когда все спортсмены не выполнят норму. То есть 1 - q1*q2*q3 = 1 - 0.2*0.3*0.1 = 0.994. б) Тут я хз, надо "по крайней мере" или "ровно" два спортсмена. Решу для обоих случаев. По крайней мере два спортсмена выполнят норму: Из ранее полученного значения вычтем еще и случаи, где ровно один спортсмен выполняет норму, а другие два не выполняют. 1 - q1*q2*q3 - p1*q2*q3 - q1*p2*q3 - q1*q2*p3 = 1 - 0.2*0.3*0.1 - 0.8*0.3*0.1 - 0.2*0.7*0.1 - 0.2*0.3*0.9 = 0.902. Ровно два спортсмена выполнят норму: p1*p2*q3 + p1*q2*p3 + q1*p2*p3 = 0.8*0.7*0.1 + 0.8*0.3*0.9 + 0.2*0.7*0.9 = 0.398.
Объяснение:
Считаем кубик идеальным. Тогда вероятность выпадения каждой из граней одинакова и равна 1/6. Следовательно
График распределения представлен на рисунке