f(|2x+7|)>f(|x-3|)
Т.к. по условию функция y=f(x) убывает => большему значению аргумента соответствует меньшее значение функции =>
|2x+7| < |x-3|
Так как и левая, и правая части неравенства принимают только положительные значения, то возведем обе части неравенства в квадрат:
|2x+7|² < |x-3|²
(2x+7)² - (x-3)² < 0 слева стоит разность квадратов
(2x+7 - х +3)(2x+7 + x-3) < 0
(x + 10)(3x + 4) < 0
Найдем нули функции (x + 10)(3x + 4) с метода интервалов:
x + 10 - + +
-10-1 1/3
3x + 4 - - +
Видим, что ф-ция (x + 10)(3x + 4) < 0 когда x + 10 и 3x + 4 принимают противоположные по знаку значения,
т.е. на промежутке ( -10 ; - 1 1/3).
ответ: ( -10 ; - 1 1/3)
Итак, при х = -4,5 неравенство x^2+9x+a>0 - не верно.
Значит, при х = -4,5 верно следующее неравенство:
x^2+9x+a<0 ( поменяли знак неравенства на противоположный).
Подставим "-4,5" вместо икса и получим:
(-4,5)^2+9*(-4,5)+a<0
20,25-40,5+a<0
-20,25+a<0
a<20,25 - при этих "a" неравенство x^2+9x+a<0 - ВЕРНО,а неравенство x^2+9x+a>0 - НЕ ВЕРНО. И верным оно будет при a>20,25 ( поменяли знак неравенства на противоположный).
Проверим: подставим в формулу неравенства любое значение "a", которое больше 20,25( например,21). Далее,чтобы решить неравенство, нам надо найти корни уравнения x^2+9x+21=0, но т.к. дискриминант <0, то решением неравенства x^2+9x+21>0 будут все иксы.
ответ: a> 20,25.