y(наиб) = 31 (в точке х = 2)
y(наим) = 5 (в точке x = 1)
На границах интервала.
Объяснение:
Для того, чтобы найти наибольшее и наименьшее значение функции нам необходимо:
Найти все стационарные точки.
Найти все критические точки.
Проверить границы интервала.
Пункт 1 - стационарные точки:Данные точки ищутся с производной. Найдем производную данной функции:
x'(t) = 8 - 4.
Приравниваем производную к 0:
8 - 4 = 0
t = ± = ±
- однако, эти точки не входят в наш интервал.
Таковых у нас нет, т.к. критические точки - это стационарные точки, но которые не входят в ОДЗ. (У нас ОДЗ от (-∞;∞+)).
Пункт 3 - границы графика:Подставляем значения границ интервала и находим значения в этих точках:
x(1)=2*1^4−4*1+7 = 5
x(2)=2*2^4−4*2+7 = 31
Следовательно, это и есть наибольшее и наименьшее значение функции на заданном интервале.
Второе число - (х- 1 2/3)
Третье число - (х+ 2 2/10)
Сумма =15
Уравнение:
х+(х- 1 2/3) + (х+ 2 2/10)=15
х+х+х=15+1 2/3 - 2 2/10
3х= 15+ 1 20/30 - 2 6/30
3х= 14 14/30 = 14 7/15
х= 14 7/15 :3 = 217/15 × 1/3
х=217/45
х= 4 37/45 - первое число
4 37/45 - 1 2/3 = 3 7/45 - второе число
4 37/45 + 2 2/10 = 7 2/90= 7 1/45 - третье число
Проверим уравнение:
4 37/45 + (4 37/45 - 1 2/3)+( 4 37/45+ 2 2/10)=15
4 37/45 + ( 4 37/45 - 1 30/45) +(4 74/90 + 2 18/90)=15
4 37/45 + 3 7/45 + 7 2/90 =15
(4+3+7) + ((37+7+1)/45) =15
14 + 45/45=15
15=15
ответ: 4 37/45 - первое число ; 3 7/45 - второе число;
7 1/45 - третье число.