М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
badery346
badery346
03.07.2021 19:49 •  Алгебра

Решите неравенство с пояснением ​


Решите неравенство с пояснением ​

👇
Открыть все ответы
Ответ:
Марк2992
Марк2992
03.07.2021
Букв у нас 10, 3 буквы А, по 2 буквы М и Т, и по одной Е, И и К.
На первую позицию можно ставить одну из десяти букв, на вторую, одну из девяти и т.д. Получим: 10!
Найдём количество которыми можно составить слово математика из данного набора букв при учёте позиции той или иной буквы.
Е, И и К могут занимать только одну позицию, а вот А, М и Т можно менять местами.
Для М и Т это будет 2! и 2!, для А – 3!
С учётом порядка позиции их будет: 1*1*1*2!*2!*3! = 24
Тогда вероятность (согласно классическому определению): \frac{24}{10!} = \frac{1}{151200}

Попробуем другой, более простой
Перестановки с повторением.
Всего у нас \frac{(1 + 1 + 1 + 2 + 2 + 3)!}{3!*2!*2!} = \frac{10!}{3!*2!*2!}
Перестановка с повторением, которая даёт нам слово "Математика" всего одна, потому мы получаем вероятность:
\frac{1}{\frac{10!}{3!*2!*2!}} = \frac{3!*2!*2!}{10!} = \frac{24}{10!} = \frac{1}{151200}
4,6(93 оценок)
Ответ:
nastya3454578335678
nastya3454578335678
03.07.2021
(x+1)(x+4) = x^2 + 4x + x + 4 = x^2 + 5x + 4
y' = (2*(x+1)(x+4) - 2x*(2x + 5))/(x+1)^2 * (x+4)^2 = 0
2x^2 + 10x + 8 - 4x^2 - 10x = 0,   8 = 2x^2,   x^2 = 4, x=2, x= -2
x+1 ≠0, x≠ -1
x+4 ≠0, x≠ -4
При x∈(-бесконечность;-4) - производная отрицательная, функция убывает
При x∈(-4;-2) - производная отрицательная, функция убывает
При x∈(-2;-1) - производная положительная, функция возрастает
При x∈(-1;2) - производная положительная, функция возрастает
При x∈(2; +бесконечность) - производная отрицательная, функция убывает
Получаем:
x=-1, -4 - точки перегиба
x=-2 - точка минимума
x=2 - точка максимума
При x∈(-4;-1) - функция выпукла вниз
При x∈(-1;+бесконечность) - функция выпукла вверх
4,7(69 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ