По определению,
Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение
2)
А значит, если взять (*),
. И правда:
(*) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)
А это и означает, что предел данной последовательности равен 0
4)
А значит, если взять (**),
. И правда:
(**) Очевидно, что для любого допустимого значения выражение
определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)
А это и означает, что предел данной последовательности равен 0
___________________________
2) a=1. Тогда
4)
___________________________
Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x.
тогда х-1 и х+1 - целые числа, расположенные слева и справа
от числа х, соответственно.
По условию, сумма квадратов данных чисел равна 869.
Составим уравнение:
(х-1)²+х²+(х+1)²=869
х²-2х+1+х²+х²+2х+1=869
3х²+2=869
3х²=869-2
3х²=867
х²=867:3
х²=289
х=
x=
1) x=17
x-1=17-1=16
x+1=17+1=18
Получаем, 16, 17 и 18 - три последовательных целых числа
Проверка: 16²+17²+18²=256+289+324=869
2) х=-17
х-1=-17-1=-18
х+1=-17+1=-16
Получаем, -18, -17 и -16 - три последовательных целых числа
Проверка:(-18)²+(-17)²+(-16)²=324+289+256=869
ответ: 16, 17 и 18; -18, -17 и -16