Обозначим трапецию АВСD, AB=CD, АD=16√3, ∠BAD=60°. ∠ABD=90°. Треугольник АВD- прямоугольный, ⇒ ∠АDB=180°-90°-60°=30°. Сторона АВ противолежит углу 30° и равна половине AD. АВ=8√3. Опустим высоту ВН на большее основание. Треугольник АВН - прямоугольный, ∠ АВН=180°-90°-60°=30°. Катет АН=АВ:2=4√3. ⇒ DH=AD-AH=16√3-4√3=12√3. Высота ВН=АВ•sin60°=8√3•(√3/2)=12. Высота равнобедренной трапеции, проведенная из тупого угла, дели основание на отрезки, больший из которых равен полусумме оснований, меньший - их полуразности⇒ DH=(AD+BC):2. Площадь трапеции равна произведению высоты на полусумму оснований. S(ABCD)=BH•DH=12•12√3=144√3 (ед. площади)
==========
Как вариант решения можно доказать, что треугольник DCB - равнобедренный, ВС=CD=AB, вычислить длину высоты и затем площадь ABCD.
Объяснение:
1 √54 < x < √124
54< x²< 124
смотрим какие квадраты в промежутке
64, 81, 100, 121
8, 9, 10, 11
2 √125-√64 = 5√5-8
3 √(18-2х) при х=-9 ⇒ √36 = 6
4 Z - множество целых чисел, -127 целое, верно
5 Z - множество целых чисел, 346,3 не целое, неверно
6 Q - рациональные π иррациональное число. неверно
7 √23-√22 >0 т. к. 23>22
т. е. допустим что √23-√22 >0 ⇒ √23> √22 возведем обе части в квадрат 23 >22 да! √23-√22 >0
8 пусть – √34 < - √33 ⇒ умножим обе части на -1 ⇒ √34 >√33 - в квадрат ⇒ 34 >33 да – √34 < - √33
9 √124 < x < √245
124 <x²< 245
x² 144 169 196 225
x = 12, 13, 14, 15
можно конечно как то преобразовывать это выражение
то есть видим что один из сомножителей похож на первое уравнение системы
Дальше решить не сложно