Пусть новая дневная норма равна Х га. С этой нормой фермер вспахал поле за 72/Х = Д (дней). (1)
Фермер превысил дневную норму на 9 га и вспахал поле на 4 дня раньше, то есть со старой нормой он бы вспахал поле за
72/(Х-9) = Д+4 (дней). (2).
Подставим значение (1) в уравнение (2) и получим:
72/(Х-9) = 72/Х + 4. Решаем уравнение:
72Х = 72(Х-9) +4Х(Х-9) => Х² - 9X - 162 = 0.
X1 = (9+√(81+648))/2 = (9+27)/2 = 18.
Х2 получается отрицательным и не удовлетворяет условиям задачи.
Итак, фермер вспахал все поле за 72/18 = 4 дня.
Примем одну сторону как "х", другую как "у". Составляем систему уравнений (цифры с двоеточием заменить фигурной скобкой)
1: х - у = 14
2: х^2 + y^2 = 26^2
Получаем, что:
х = (14 + у)
(у^2 + 28y + 196) + y^2 = 676
Приводим подобные:
2y^2 + 28y - 480 = 0
Сокращаем на "2":
y^2 + 14y - 240 = 0
Далее решаем по теореме Виета для квадратных уравнений, либо через дискриминант (лично я предпочитаю второе):
a = 1, b = 14, c = -240
D = b^2 - 4ac
D = 14*14 + 4*240 = 1156
√D = 34
у1 = -b+√D/2a = -14+34/2 = 10 см.
y2 = -b-√D/2a = -14-34/2 = -24 см (таких сторон прямоугольников не существует в природе, вычеркиваем =)).
Подставляем в первое уравнение х = (14 + у) и... о чудо!:
14+10 = 24 см.
ответ: Большая сторона данного прямоугольника равна 24 сантиметрам.