1. Разложите на множители:
1)m³+125n³=m³+(5n)³=(m+5n)(m²-5mn+25n²)
2)-5x²+30x-45=-5(x²-6x+9)=-5(x-3)²
3)10000-c⁴=10⁴-c⁴=(10+c)(10³-10c²+10c²-c³)=(10+c)(10²(10-c)+c²(10-c))=(10+c)(10-c)(10²+c²)
2. Упростите выражение:
b(b - 3)(b + 3) – (b – 1)(b² + b + 1)=b(b²-9)-(b³-1)=b³-9b-b³+1=-9b+1
3. Разложите на множители:
1)3y³ - 36y² + 108y = 3y(y² - 12y + 36) = 3y(y - 6)² = 3y(y - 6)(y - 6)
2)a² + 8ab + 16b² - 1 = (a² + 8ab + 16b²) - 1 = (a + 4b)² - 1 = (a + 4b - 1)(a + 4b + 1)
4. Решите уравнение:
1)3x^3-108x=0
3x(x^2-36)=0
3x(x-6)(x+6)=0
3x=0
x=0
ответ:x=0
2)121x^3-22x^2+x=0
x(121x^2-22x+1)=0
x(11x-1)^2=0
x=0
ответ:x=0
5. Докажите, что значение выражения - делится нацело на 22:
3⁹-5³=(3³)³-5³=(3³-5)((3³)²+3³*5+5²)=(27-5)*(3⁶+3³*5+25)=22*(3⁶+3³*5+25).
значит 3⁹-5³ делится на 22.
Находим нули производной:
eˣ=0 или 2eˣ-9=0
eˣ - не может равняться нулю, так как функция вида у=аˣ всегда больше нуля.
теперь воспользуемся методом интервалов
- +
--------------ln4.5----------------------->
Раз функция меняет знак с минуса на плюс, значит x=ln4.5 - точка минимума.
e≈2.7 ⇒
дан промежуток [1;3]
убедимся, что ln4.5 принадлежит данному промежутку:
1=lne
3=3*1=3lne=lne³
e³≈2.7³=19.683
lne<ln4.5<lne³ - зная, что е>1, знак неравенства сохраняется
e<4.5<e³ - равенство выполняется, значит, действительно ln4.5 принадлежит данному промежутку.
x=1, y(1)=e² -9e -2≈2.7²-9*2.7-2=-19.01
x=3, y(3)=e⁶-9e³-2≈208