(2x+3)(2x+1)/(x-1)(x-4)>=0 Найдем значения "x", которые обнуляют скобки в числителе и знаменателе: 2x+3=0 => x=-1,5 2x+1=0 => x=-0,5 x-1=0 => x=1 x-4=> x=4
Эти точки делят числовую прямую на 5 промежутков.Точки 1 и 4 не будут принадлежать промежутку, т.к. в этих точках знаменатель обращается в ноль.
[-1,5][-0,5](1)(4) + - + - + Смотрим, на каком из промежутков значение неравенства > 0.Это и будет ответом: x принадлежит (- бесконечность;-1,5] U [-0,5;1) U (4; + бесконечность)
Четырёхзначное число "abcd" можно представить в виде: а*1000+b*100+c*10+d, при этом произведение а*b*c*d =10, соответственно данное число может состоять из цифр 1,1,2 и 5. Очевидно, что делимое при делении без остатка на 28 (кратное 28) может заканчиваться только на 2, т.к. произведение 8 с другими числами не может образовывать в разряде единиц ни 1, ни 5. Остается три варианта четырёхзначных чисел это 1152, 1512 и 5112, из которых на 28 делится только 1512 (это 54). 1512 - это единственный ответ.
Найдем значения "x", которые обнуляют скобки в числителе и знаменателе:
2x+3=0 => x=-1,5
2x+1=0 => x=-0,5
x-1=0 => x=1
x-4=> x=4
Эти точки делят числовую прямую на 5 промежутков.Точки 1 и 4 не будут принадлежать промежутку, т.к. в этих точках знаменатель обращается в ноль.
[-1,5][-0,5](1)(4)
+ - + - +
Смотрим, на каком из промежутков значение неравенства > 0.Это и будет ответом: x принадлежит (- бесконечность;-1,5] U [-0,5;1) U (4; + бесконечность)