1) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 1)^2*(x + 2) = 0 (x - 1)^2 = 0 x - 1 = 0 x = 1
x + 2 = 0 x = - 2
2) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 1)(x - 3) = 0 x^2 = 1 x₁ = 1 x₂= - 1;
x - 3 = 0 x₃ = 3
3) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x - 4)^2*(x - 3) = 0 x - 4 = 0 x = 4
x - 3 = 0 x = 3
4) Произведение равно нулю, когда хотя бы один из множителей равен нулю, а другой при этом существует (x^2 - 4)(x + 1) = 0
Если точка Р(1;0) повернётся на угол 90° против часовой стрелки, то она перейдёт в точку с координатами Р₁(0,1). И если поворот будет по часовой стрелке, то точка будет Р₂(0,-1). Если точку Р(1;0) повернуть на 180° против часовой стрелки, то она перейдёт в точку Р₃(-1;0). Если поворот будет по часовой стрелке, то получим ту же точку Р₃(-1;0). Если точку Р(1;0) повернуть на 270° против часовой стрелки, то она перейдёт в точку Р₄(0;-1). Если поворот будет по часовой стрелке, то получим точку Р₅(0;1).
ответ: x=± 3π/2 + 2πn, где n ∈ Z.
Объяснение: