М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ДжузоСузуя13
ДжузоСузуя13
10.01.2020 20:41 •  Алгебра

Найдите первообразную функции (на фото), график которой проходит через точку А(П;3)


Найдите первообразную функции (на фото), график которой проходит через точку А(П;3)

👇
Открыть все ответы
Ответ:
Petrov7771
Petrov7771
10.01.2020

Дробь \frac{24-5x}{x+1} является неправильной рациональной дробью, так как степени многочленов в числителе и в знаменателе одинаковые и равны 1. Значит можно выделить целую и дробную часть неправильной дроби. Так как в знаменателе стоит многочлен 1 степени (линейная ф-ция) х+1, то и в числителе выделим х+1. Для этого надо вынести за скобки коэффициент (-5), который стоит перед х, и записать в скобках (х+1). Так как -5(х+1)=-5х-5, то , чтобы выражение не изменилось, надо добавить (+5), получим:

24-5\cdot x=24-5(x+1)+5=29-5(x+1) .

Если в дальнейшем надо записать целую и дробную части неправильной рац. дроби, то

\frac{24-5x}{x+1}=\frac{29-5(x+1)}{x+1}=\frac{29}{x+1}-\frac{5(x+1)}{x+1}=\frac{29}{x+1}-5\; .


Наткнулась в учебнике шарыгина на следующую вещь: (фрагмент решения уравнения). и, хоть убей - не мо
4,4(56 оценок)
Ответ:
varyaa0711747
varyaa0711747
10.01.2020

Объяснение:

\sin{x} + \sin 3x+ \sin 5x + \sin 7x \: = \\ = 4 \cos x \cos 2x \: \sin 4x

Проведем доказательство тождества следующим образом:

- проведем равносильные преобразования левой части доказываемого тождества;

- если в итоге преобразований левая часть примет ту же форму что и правая часть - тождество доказано.

Итак - левая часть:

\sin{x} + \sin 3x+ \sin 5x + \sin 7x \: = ...

Сгруппируем следующим образом:

...=(\sin{x} + \sin 7x)+ (\sin 3x + \sin 5x ) = \\ =(\sin{7x} + \sin x)+ (\sin 5x + \sin 3x ) ...

Воспользуемся формулой суммы синусов:

\small{\sin \alpha + sin \beta = 2sin( \frac{ \alpha + \beta }{2} ){\cdot}cos( \frac{ \alpha - \beta }{2})}

Поочередно сложим группы внутри скобок:

a)\:\: \sin 7x + \sin x = 2 \sin( \frac{7x {+ }x}{2} ) \cos( \frac{ 7x {-} x }{2}) = \\ = 2 \sin 4x{\cdot} \cos {3x} \\ \\ b) \:\:\: \sin 5x + \sin 3x = 2 \sin( \frac{5x {+ }3x}{2} ) {\cdot}\cos( \frac{ 5x {-} 3x }{2}) = \\ = 2 \sin 4x {\cdot}\cos x \\

Тогда вся левая часть примет вид:

\sin x + \sin 3x + \sin 5x + \sin 7x = \\ = ( \sin 7x + \sin x) + ( \sin 5x + \sin 3x) = \\ = 2{\cdot} \sin 4x{\cdot} \cos 3x + 2{\cdot} \sin 4x {\cdot} \cos x = \\ = 2{\cdot} \sin 4x {\cdot} (\cos 3x + \cos x) \\

для преобразования суммы косинусов в скобках воспользуемся такой формулой:

cos \alpha + cos \beta = 2 {\cdot}\cos ( \frac{ \alpha + \beta }{2} ) {\cdot}\cos( \frac{ \alpha - \beta }{2})

Выражение примет вид:

...= 2 \sin 4x{\cdot} (\cos 3x + \cos x) = \\ =2 {\cdot}\sin 4x{\cdot} \big(2\cos {(\tfrac{3x + x}{2})} {\cdot}\cos {(\tfrac{3x - x}{2})} \big) = \\ =2 {\cdot}\sin 4x {\cdot}2 \cos 2x {\cdot}\cos x =\\ = 4{\cdot}\sin 4x {\cdot} \cos 2x {\cdot}\cos x =\\=4{\cdot} \cos x {\cdot}\cos 2x {\cdot} \sin 4x

В результате преобразований левая часть приняла тот же вид что и правая.

Тождество доказано.

4,5(3 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ