М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Desa11
Desa11
19.08.2021 08:15 •  Алгебра

Решите уравнение: log по основанию 3(2x-4)=log по основанию 3(x+7)​

👇
Ответ:
kthjxrfqqq
kthjxrfqqq
19.08.2021

log₃(2x-4)=log₃(x+7)

ОДЗ:  {2x-4>0        {2x>4       {x>2

          {x+7>0    =>  {x>-7  =>  {x>-7      => x∈(2;+∞)

2x-4=x+7

2x-x=7+4

x=11 ∈(2;+∞)

ответ: 11

4,7(8 оценок)
Открыть все ответы
Ответ:
hyyeblan5577
hyyeblan5577
19.08.2021
Пусть длина наименьшей стороны клумбы х м, т.к. вторая сторона длиннее на 5м, то её длина составит (х+5)м. Вокруг клумбы идёт дорожка шириной 1 м, значит длина стороны дорожки составит (1+х+5+1)=(х+7)м - широкая сторона, и меньшая сторона составит (1+х+1)м=(х+2)м. Площадь дорожки составляет 26м² и складывается из площади 4-ч прямоугольников, из которых стороны двух длинных прямоугольников равны по (х+7)м и 1м. Площадь этих прямоугольников равна и составляет S1.2=1×(х+7)м, и 2 прямоугольника со сторонами 1м и (х+2)м, и площади их равны 1×(х+2)м=(х+2)м. Вся площадь дорожки составит 2×(х+7)+2×(х+2)=26. Делим обе части уравнения на 2, получаем: 

(х+7)+(х+2)=13

2х+9=13

2х=13-9

2х=4

х=2

Таким образом, наименьшая сторона клумбы равна 2м, тогда наибольшая 2+5=7м.
4,7(89 оценок)
Ответ:
паша5808989
паша5808989
19.08.2021

Дано неравенство: 6x² − x - 5 > 0.

Находим корни квадратного трёхчлена: 6x² − x - 5 = 0.

Квадратное уравнение, решаем относительно x:

Ищем дискриминант:

D=(-1)^2-4*6*(-5)=1-4*6*(-5)=1-24*(-5)=1-(-24*5)=1-(-120)=1+120=121;

Дискриминант больше 0, уравнение имеет 2 корня:

x1=(√121-(-1))/(2*6)=(11-(-1))/(2*6)=(11+1)/(2*6)=12/(2*6)=12/12=1;

x2=(-√121-(-1))/(2*6)=(-11-(-1))/(2*6)=(-11+1)/(2*6)=-10/(2*6)=-10/12=-(5/6)≈-0.833333.

откуда x1 = 1 и x2 = -(5/6).

Раскладываем левую часть неравенства на множители: 6(x – 1) (x +(5/6)) > 0. Точки -5/6 и 1 разбивают ось X на три промежутка:

ОО⟶Х

-5/6 1

Точки -5/6 и 1 выколоты. Это связано с тем, что решаемое неравенство — строгое (так что x не может равняться -5/6 или 1). Далее определяем знаки левой части неравенства на каждом из промежутков

+ – +

ОО⟶Х

-5/6 1

Получаем: x < -5/6 или x > 1.

4,8(16 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ