Поскольку переменная х входит в чётной степени, то график заданной функции симметричен относительно оси у. Производная этой функции равна нулю пр х = 0. Подставив это значение в уравнение функции, получаем у = 1. Исследуем поведение производной вблизи точки х = 0. х 0.5 0 -0.5 у' -0.6875 0 0.6875. Производная переходит с + на -, значит, при х = 0 имеем максимум функции, равный у = 1. Минимальное значение на заданном отрезке найдём, подставив значение х = +-3 в уравнение (достаточно х = 3, так как функция чётная) ymin = 1-3⁴-3⁶ = 1-3⁴*(1+3²) = 1-81*(1+9) = 1-810 = -809. ответ при (х=+-3) : умакс = 1, умин = -809.
Пусть х первое число, у- второе число, то х+у=80, 0,5х+0,25у=26.По условию задачи составим систему уравнение:
х+у=80 х=80-у х=80-у х=80-у
0,5х+0,25у=26 0,5(80-у)+0,25у=26 40-0,5у+0,25у=26 -0,25у=-14
х=80-у х=80-56 х=24 -первое число
у=56 у=56 у=56 -второе число
проверка:
24+56=80 0,5*24+0,25*56=26
80=80 12+14=26
26=26
ответ: первое число 24, второе 56