Используя символы запишите двумя множество, элементами которых являются а) натуральные числа меньше 7, б) цельные числа больше -з и меньше 5, в) натуральные делители числа 180.
1) если sin3xsin5x≥0, то |sin3xsin5x|= sin3xsin5x и уравнение принимает вид: (cos3xcos5x+sin3xsin5x) / sin2x=2cos2x. Формула cos3xcos5x+sin3xsin5x=cos(3x-5x)=cos(-2x) cos(-2x)=cos2x в силу четности косинуса. Уравнение принимает вид cos2x/sin2x=2cos2x или (cos2x/sin2x)-2 cos2x=0 cos2x(1/sin2x - 2)=0 cos2x(1-2sin2x)/sin2x=0 cos2x=0 или 1-2sin2x=0 sin2x≠0 2x=(π/2)+πk, k∈Z или sin2x=1/2 2x=(π/6)+2πn, n∈Z ; 2x=(5π/6)+2πm, m∈Z
x=(π/4)+(π/2)k, k∈Z; x=(π/12)+πn, n∈Z ; x=(5π/12)+πm, m∈Z. Так как sin3xsin5x≥0, то это означает, что угол х в первой или третьей четверти ответ.(π/4)+πk;(π/12)+πn; (5π/12)+πm; k, n, m∈Z. Промежутку [0;2π) принадлежат корни π/12; π/4; 5π/12; 13π/12; 5π/4; 17π/12. Сумма этих корней равна 54π/12.
2)если sin3xsin5x<0, то |sin3xsin5x|=- sin3xsin5x и уравнение принимает вид: (cos3xcos5x-sin3xsin5x) / sin2x=2cos2x. Формула cos3xcos5x-sin3xsin5x=cos(3x+5x)=cos(8x) Уравнение принимает вид cos8x/sin2x=2cos2x или cos8x=2 cos2xsin2x; sin2x≠0.
cos8x=sin4x; 1-2sin²4x=sin4x; 2sin²4x+sin4x-1=0; D=1-4·2·(-1)=9 sin4x=-1 или sin4x=1/2 4x=(π/2)+2πk,k∈Z или 4х=(π/6)+2πn, n∈Z; 4x=(5π/6)+2πn, n∈Z;
x=(π/8)+(π/2)k,k∈Z или х=(π/24)+(π/2)n, n∈Z; x=(5π/24)+(π/2)n, n∈Z.
sin3xsin5x<0, то угол х во второй или четвертой четверти
x=(5π/8)+πk,k∈Z или х=(13π/24)+πn, n∈Z; x=(17π/24)+πn, n∈Z.
Промежутку [0;2π) принадлежат корни 13π/24;5π/8;17π/24;37π/24;39π/24;41π/24. Сумма корней 162π/24. Сумма 1) и 2) (54π/24)+(162π/24)=216π/24=36π/4=9π g=9 О т в е т. 9+1=10
Высота - это перпендикуляр к стороне треугольника, то есть когда проводишь высоту получается 2 равных прямоугольных треугольников. Получается высота - это катет прямоугольного треугольника, а второй катет - это сторона равностороннего треугольника деленная пополам. Тогда тебе неизвестен катет, ищем его из теоремы (не помню как называется, по моему Пифагора) Что сумма квадратов катетов равна квадрату гипотинузы. Допустим один катет будет А, другой В, гипотинуза С. И получается А, В=6/2=3, С=6. Вот твое уравнение: А в квадрате+3 в квадрате= 6 в квадрате А в квадрате= 36-9 А в квадрате= 27 А = корень из 27