1. известно ,что m> n . какая неровность правильная? а) 3m> 3n b) m-3> n-3 c) -3m> -3n d) m+3> n+3 2. при каких значениях х определена функция y = -5 корня из 18 - 2х a) x больше или ровно 0 b) таких занчений не существует c) при прилюбых d) x< 9
Найдем производную функции: y`(x) = 1 - 4/x^2 Приравняем ее нулю: 1-4/x^2 = 0 4/x^2 = 1 x^2 = 4 x1 = 2, x2 = -2 Нашему промежутку соответствует точка х = 2. Найдем вторую производную и подставим туда нашу точку, чтобы узнать что это за точка: y``(x) = 8/x^3 y``(2) = 8/8 = 1 Положительное значение второй производной, следовательно, х = 2 - точка минимума. Минимум равен y(2) = 2 + 4/2 = 4
На данном промежутке одна экстремальная точка, соответствующая минимума, значит график функции с обоих краев точки уходит вверх, чтобы найти максимальное значение сравним значения краев заданного промежутка: y(1) = 1 + 4/1 = 5 y(3) = 3 + 4/3 = 4 + 1/3 y(1) = 5 больше, значит это точка максимума для данного промежутка.
х³-5х²-2х+24=0 Корни уравнения надо искать среди делителей свободного слагаемого. Делители числа 24: 1;2;3;4;6;12;24 -1;-2;-3;-4;-6;-12;-24 Проверкой убеждаемся, что х=2 - корень уравнения В самом деле. (-2)³-5·(-2)²-2·(-2)+24=0 -8-20+4+24=0 -28+28=0 - верно. Значит, левая часть раскладывается на множители, один из которых (х-(-2))=х+2 Делим -х³-5х²-2х+24 | x+2 x³+2x² x²-7x+12
_-7x²-2x+24 -7x²-14x
_12x+24 12x+24
0
х³-5х²-2х+24=0 (x+2)(x²-7x+12)=0 x+2=0 или х²-7х+12=0 х=-2 х=(7-1)/2=3 или х=(7+1)/2=4 О т в е т. -2; 3; 4.
2) определена при d